Images shed new light on inflammation (w/ Video)

October 15, 2010, University of Calgary

Researchers at the University of Calgary Faculty of Medicine are using an innovative new imaging technique to study how white blood cells (called neutrophils) respond to inflammation, and have revealed new targets to inhibit the response.

When the body is invaded by infection, the immune system counters by generating inflammation with deployment of white blood cells to the site of danger to kill invading bacteria. However, inappropriate inflammation occurs in the absence of infection when tissues are damaged, and this inappropriate response contributes to diseases such as heart attacks and stroke. Researchers used both experimental animal models and human white blood cells to discover that damaged tissue can release signals that attract white blood cells, and blocking these signal can prevent inappropriate inflammation.

The findings are published in the October 15th edition of Science.

"We have known how white blood cells find their way to sites of infection for many years, but understanding how, or even why white blood cells go to sites of sterile non-infectious has been a real dilemma," says Dr. Paul Kubes, PhD, senior author of the study as well as Director of the Snyder Institute of Infection, Immunity and Inflammation. "Recognizing that damaged cells release "bacteria-like" signals that attract white blood cells and cause inflammation might allow for the development of a whole new class of therapeutics to combat ."

Video: white blood cells responding to an area of tissue damage

Another remarkable aspect of the research is that scientists were able to take unprecedented real-time videos of the activity at sites of inflammation. The University of Calgary is one of very few centers in the world using this imaging technology, called spinning disk confocal intravial , to study the .

"These powerful imaging systems allow us to tackle complicated problems by directly observing the activity of the immune system in the body. Our laboratory is perhaps the only in Canada, and amongst a select few in the world that have this technology, so it is truly a privilege to contribute to this research," says Braedon McDonald, the lead author of the study and PhD candidate.

White blood cells, called neutrophils (green) migrating through blood vessels (blue) towards an area of tissue damage in the liver (red).
3D rendering of the injured liver showing white blood cells, called neutrophils (green) within blood vessels (blue) enroute to damaged tissue (red).

Related Stories

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.