Neuroscience research may help patients recover from brain injury

October 5, 2010, University of California Los Angeles

New neuroscience research by life scientists from UCLA and Australia may potentially help people who have lost their ability to remember due to brain injury or disease.

By examining how we learn and store memories, these scientists have shown that the way the brain first captures and encodes a situation or event is quite different from how it processes subsequent similar events.

The study is published in the Sept. 29 edition of the online journal , a publication of the Public Library of Science.

Memories are formed in the part of the brain known as the hippocampus, a seahorse-shaped structure that plays critical roles in processing, storing and recalling information. The is very susceptible to damage through or lack of oxygen and is critically involved in Alzheimer's disease, said study co-author Michael Fanselow, a UCLA professor of psychology and a member of the UCLA Brain Research Institute.

When a memory is first formed, a small involved in synaptic transmission — the NMDA receptor — is indispensable to the process, said study co-author Bryce Vissel, a group leader of the neuroscience research program at Sydney's Garvan Institute of Medical Research. Activation of the NMDA receptor allows calcium to enter a neuron, and calcium permeability enables a chain of molecular reactions that help encode experience and consolidate memory, Fanselow and Vissel said.

Learning theorists have assumed that learning cannot occur without NMDA receptors. But the new findings show that NMDA receptors are not essential in "second-learning," when the rules of "first-learning" are applied to new yet similar scenarios. Instead, another class of receptors known as AMPA receptors, also calcium permeable, appears to take up the task.

Although the findings are still preliminary, Fanselow is optimistic about what it could mean for people whose memory formation has been impaired.

"The system we are working with is one that we know is critically involved in Alzheimer's disease and other kinds of deficit memory impairment," he said. "This is just the start. We have uncovered a mechanism that contributes to learning and memory, and we now have to figure out what to do with it. When is it important normally? When can we harness it to take over function when the normal mechanisms aren't working? Can we use it to have some protective effect in conditions like Alzheimer's disease, where neurons are dying? Can we stimulate these pathways and keep them participating in memories?

"We can see that we might now have a target for drugs that are different from the standard class of cognitive enhancers," he added. "We can see the possibilities for different styles of training that better activate this newly discovered mechanism."

If the processes involved in second-stage learning can be mimicked therapeutically, he said, the health benefits potentially could be substantial.

Fanselow and Vissel have worked closely over the last six years, along with Thomas O'Dell, a UCLA professor of physiology at the David Geffen School of Medicine at UCLA, to unravel the two different synaptic mechanisms and their meanings.

"When we started this research, we knew that the NMDA receptor was implicated in learning and , and we decided to see if we could mimic its process through another receptor system," said Vissel, a molecular neuroscientist. "Instead of having to create a new receptor system, we discovered one already in existence — one that was NMDA-independent. This amounted to uncovering a whole new mechanism of learning."

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.