Neuroscience research may help patients recover from brain injury

October 5, 2010

New neuroscience research by life scientists from UCLA and Australia may potentially help people who have lost their ability to remember due to brain injury or disease.

By examining how we learn and store memories, these scientists have shown that the way the brain first captures and encodes a situation or event is quite different from how it processes subsequent similar events.

The study is published in the Sept. 29 edition of the online journal , a publication of the Public Library of Science.

Memories are formed in the part of the brain known as the hippocampus, a seahorse-shaped structure that plays critical roles in processing, storing and recalling information. The is very susceptible to damage through or lack of oxygen and is critically involved in Alzheimer's disease, said study co-author Michael Fanselow, a UCLA professor of psychology and a member of the UCLA Brain Research Institute.

When a memory is first formed, a small involved in synaptic transmission — the NMDA receptor — is indispensable to the process, said study co-author Bryce Vissel, a group leader of the neuroscience research program at Sydney's Garvan Institute of Medical Research. Activation of the NMDA receptor allows calcium to enter a neuron, and calcium permeability enables a chain of molecular reactions that help encode experience and consolidate memory, Fanselow and Vissel said.

Learning theorists have assumed that learning cannot occur without NMDA receptors. But the new findings show that NMDA receptors are not essential in "second-learning," when the rules of "first-learning" are applied to new yet similar scenarios. Instead, another class of receptors known as AMPA receptors, also calcium permeable, appears to take up the task.

Although the findings are still preliminary, Fanselow is optimistic about what it could mean for people whose memory formation has been impaired.

"The system we are working with is one that we know is critically involved in Alzheimer's disease and other kinds of deficit memory impairment," he said. "This is just the start. We have uncovered a mechanism that contributes to learning and memory, and we now have to figure out what to do with it. When is it important normally? When can we harness it to take over function when the normal mechanisms aren't working? Can we use it to have some protective effect in conditions like Alzheimer's disease, where neurons are dying? Can we stimulate these pathways and keep them participating in memories?

"We can see that we might now have a target for drugs that are different from the standard class of cognitive enhancers," he added. "We can see the possibilities for different styles of training that better activate this newly discovered mechanism."

If the processes involved in second-stage learning can be mimicked therapeutically, he said, the health benefits potentially could be substantial.

Fanselow and Vissel have worked closely over the last six years, along with Thomas O'Dell, a UCLA professor of physiology at the David Geffen School of Medicine at UCLA, to unravel the two different synaptic mechanisms and their meanings.

"When we started this research, we knew that the NMDA receptor was implicated in learning and , and we decided to see if we could mimic its process through another receptor system," said Vissel, a molecular neuroscientist. "Instead of having to create a new receptor system, we discovered one already in existence — one that was NMDA-independent. This amounted to uncovering a whole new mechanism of learning."

Related Stories

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.