Scientists link hepatitis C virus infection to fat enzyme in liver cells

October 10, 2010

Scientists at the Gladstone Institute of Virology and Immunology (GIVI) have found that an enzyme associated with the storage of fat in the liver is required for the infectious activity of the hepatitis C virus (HCV). This discovery may offer a new strategy for treating the infection.

More than 160 million people are infected throughout the world, and no vaccine is available to prevent further spread of the disease. Current treatments are not effective against the most common strains in the US and Europe. The study, published in the journal Nature Medicine, shows that the enzyme DGAT1 is a key factor in HCV infection. With several potential DGAT1 inhibitors already in the drug-development pipeline, a treatment for HCV may be possible in the near future.

"Our results reveal a potential 'Achilles heel' for HCV infection," said Melanie Ott, MD, PhD, senior author on the study. "Several DGAT1 inhibitors are already in early clinical trials to treat obesity-associated diseases. They might also work against HCV."

At first glance, the HCV lifecycle is fairly simple. The virus enters the cell. One large protein is produced and cut into several smaller viral enzymes and proteins that build the virus. The is copied, and the new RNAs and structural proteins are used to make new virus particles that are released into the blood stream for to infect more cells. These processes were thought to occur at specialized membranes inside the cell. However, recently it has been shown that fat droplets are critically involved.

Fat droplets, which store fat in cells, have become a hot new topic in biology. DGAT1 is one of the enzymes that help to form fat droplets. The Gladstone team, led by Eva Herker, PhD, discovered that HCV infection and viral particle production are severely impaired in that lack DGAT1 activity.

"DGAT enzymes produce the fat that is stored in the droplets that are important for HCV replication, so we wondered if inhibiting those enzymes might disrupt the viral life cycle," said Dr. Herker. "We found that HCV specifically relies on one DGAT enzymes, DGAT1. When we inhibit DGAT1 with a drug, the liver still produces fat droplets through another DGAT enzyme but these droplets cannot be used by HCV."

The team sought to identify which step in the HCV lifecycle requires DGAT1. They found that DGAT1 interacts with one viral protein, the viral nucleocapsid core protein, required for viral particle assembly. The core protein normally associates with the surface of fat droplets but cannot do so when DGAT1 is inhibited or missing in infected cells.

Related Stories

Recommended for you

Pneumonia vaccine under development provides 'most comprehensive coverage' to date, alleviates antimicrobial concerns

October 20, 2017
In 2004, pneumonia killed more than 2 million children worldwide, according to the World Health Organization. By 2015, the number was less than 1 million.

Newly discovered viral marker could help predict flu severity in infected patients

October 20, 2017
Flu viruses contain defective genetic material that may activate the immune system in infected patients, and new research published in PLOS Pathogens suggests that lower levels of these molecules could increase flu severity.

Migraines may be the brain's way of dealing with oxidative stress

October 19, 2017
A new perspective article highlights a compelling theory about migraine attacks: that they are an integrated mechanism by which the brain protects and repairs itself. Recent insightful findings and potential ways to use them ...

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

Flu simulations suggest pandemics more likely in spring, early summer

October 19, 2017
New statistical simulations suggest that Northern Hemisphere flu pandemics are most likely to emerge in late spring or early summer at the tail end of the normal flu season, according to a new study published in PLOS Computational ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.