Scientists show how anthrax bacteria impair immune response

November 17, 2010, National Institutes of Health

Researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have determined a key mechanism by which Bacillus anthracis bacteria initiate anthrax infection despite being greatly outnumbered by immune system scavenger cells. The finding, made by studying genetically modified mice, adds new detail to the picture of early-stage anthrax infection and supports efforts to develop vaccines and drugs that would block this part of the cycle.

To start an infection, anthrax bacteria release a toxin that binds to through two receptors, TEM8 and CMG2, found on the cell surface. The binding allows two additional bacterial toxins to enter the cells, setting off a chain of events that impairs their ability to ingest and kill the bacteria.

In the new research, NIAID investigators Stephen Leppla, Ph.D., Shihui Liu, M.D., Ph.D., and colleagues bred that lacked CMG2 receptors on two kinds of immune cells, neutrophils and macrophages. These usually are the first cells to arrive at the site of an anthrax infection, where they engulf the invading bacteria and try to prevent the spread of infection.

Mice without CMG2 receptors on these immune cells were completely resistant to infection by B. anthracis bacteria, experiencing only a temporary swelling at the site of infection, and fully clearing the infection within two weeks. In contrast, in normal mice, the level of anthrax bacteria increased rapidly in the 48 hours following infection, and all the mice died within six days.

The researchers concluded that B. anthracis uses CMG2 to impair the scavenging action of neutrophils and macrophages during early infection, giving the bacteria time to multiply to levels sufficient to overwhelm the body's defenses. Developing drugs and vaccines that block B. anthracis from establishing early infection via binding to the CMG2 receptor, say the study authors, may be crucial to success in treating and preventing anthrax disease.

More information: S Liu et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host and Microbe. DOI:10.1016/j.chom.2010.10.004 (2010).

Related Stories

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.