NIH researchers link rare cancer to cell oxygen deficiency

December 21, 2010
The enzyme succinate dehydrogenase processes oxygen to supply energy to the cell. It is embedded in the outer membrane of mitochondria, cellular structures which supply energy to the cell. The enzyme is made up of parts, or subunits. The researchers found that some patients with GIST had mutations in the genes for the B and C subunits of the enzyme. In other cases, the enzyme failed to function, presumably because of other, as yet undiscovered, mutations.

Researchers at the National Institutes of Health have discovered that a rare cancer of the digestive tract is linked to a shutdown in an enzyme that helps supply oxygen to cells.

In some cases, the enzyme's failure to function resulted from errors in genes containing the information needed to make the . In others, the cause could not be identified, but was believed to be genetic.

Gastrointestinal stromal tumors (GIST) are tumors of the esophagus, stomach, and intestines. They occur in of the nervous system, which control the muscles of the .

Within the last 10 years, researchers have found that the majority of adults who develop GIST have mutations in two genes, known as KIT and PDGFRA. The drug imatinib (Gleevec) is effective in treating many GIST having mutations in these genes. Unfortunately, most GIST tumors that occur in children do not have KIT or PDGFRA mutations, and imatinib is not effective for treating them. Pediatric GIST is very rare, occurring in less than 1 in a million individuals each year.

For the current study, the researchers set out to find genetic causes of GIST among individuals who do not have mutations in the genes for KIT or PDGFRA. The researchers examined tissue from 34 GIST patients for mutations in the genes for succinate dehydrogenase, an enzyme that processes oxygen to obtain energy for cells. The researchers narrowed their search to genes for succinate dehydrogenase because earlier research has shown that mutations in this enzyme are a hallmark of Carney Stratakis syndrome, a rare disorder in which individuals develop GIST and paraganglioma, a tumor that also affects cells of the nervous system.

The enzyme succinate dehydrogenase processes oxygen to supply energy to the cell. It is embedded in the outer membrane of mitochondria, cellular structures which supply energy to the cell. The enzyme is made up of parts, or subunits. The researchers found that some patients with GIST had mutations in the genes for the B and C subunits of the enzyme. In other cases, the enzyme failed to function, presumably because of other, as yet undiscovered, mutations.

The researchers found that 12 percent of the GIST patients in their study had mutations in genes containing the information needed to make the up the parts, or subunits, of succinate dehydrogenase. Specifically, the patients had defects in the B and C subunits of the enzyme. Although the remaining patients did not have any of these mutations, succinate dehydrogenase in tissue from their tumors did not appear to be functioning and cellular respiration was disrupted. The researchers believe that undiscovered mutations account for the enzyme’s failure to function.

“Tracing the roots of this disease to cellular respiration has yielded a promising lead on how GIST tumors might form,” said senior author Constantine A. Stratakis, M.D., D.Sc., acting director of the Division of Intramural Research at the NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, and one of the researchers after whom Carney Stratakis syndrome was named. “The finding may also lead to the development of treatments for GIST subtypes that have not responded to traditional therapies.”

The findings were published online in the Proceedings of the National Academy of Sciences.

"The body's healthy cells require oxygen to access energy, grow and multiply," Dr. Stratakis explained. "Previous research has shown that tumors use oxygen differently than do normal cells."

“Our next goal is to identify the other genes that control the normal process and determine if mutations in these play a role in cancer,” Dr. Stratakis added.

The study was undertaken at the NIH Pediatric and Wild-Type GIST Clinic, established to increase understanding of GIST, and its causes, and further new treatments. The clinic, located at the NIH Campus in Bethesda, Md., is supported by the NICHD and the National Institute.

Related Stories

Recommended for you

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Popular immunotherapy target turns out to have a surprising buddy

August 16, 2017
The majority of current cancer immunotherapies focus on PD-L1. This well studied protein turns out to be controlled by a partner, CMTM6, a previously unexplored molecule that is now suddenly also a potential therapeutic target. ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

A metabolic treatment for pancreatic cancer?

August 15, 2017
Pancreatic cancer is now the third leading cause of cancer mortality. Its incidence is increasing in parallel with the population increase in obesity, and its five-year survival rate still hovers at just 8 to 9 percent. Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.