Infiltrating cancer's recruitment center

January 26, 2011

The most common connective tissue cell in animals is the fibroblast, which plays an important role in healing wounds. But Dr. Neta Erez of Tel Aviv University's Sackler Faculty of Medicine has now demonstrated that fibroblasts can also do a body great harm, helping to "recruit" immune cells for tumor growth.

At the onset of a tumor's creation when cancer cell proliferation is beginning, fibroblasts rush to the scene to aid in healing. However, Dr. Erez's research shows that these ordinarily helpful cells can actually be turned against the body, enhancing by stimulating inflammation.

Her research was done in animal models using fresh mouse as well as human tumors extracted in the . It was originally carried out at the University of California, San Francisco in the lab of Prof. Douglas Hanahan. Published in Cancer Cell, her most recent findings demonstrate that a growing tumor can co-opt fibroblasts, turning them into cancer-associated fibroblasts (CAFs) making them do the dirty work of supporting tumors.

Cancer and inflammation — a two-way street

In recent years, scientists have begun to understand the link between inflammation and cancer. Their findings suggested why long-term aspirin therapy –– which reduces inflammation –– can help prevent or slow cancer growth.

Inflammation causes cancer, and researchers are now finding that the reverse is also true: cancer can also cause inflammation by attracting immune cells to sites of growing tumors. Inflammatory cells are implicated in all solid tumors, including liver cancer, which may start with chronic liver inflammation due to hepatitis, and intestinal or colon cancer, which can be triggered by chronic inflammation of the bowels from an ulcer, colitis or Crohn's disease.

"Cancer cells recruit CAFs at very early stages," Dr. Erez says. "Under normal circumstances fibroblasts are very good for health and healing, but we've shown for the first time how they can be coerced into supporting inflammation that enhances the growth of tumors."

CAFs stimulate inflammation and angiogenesis –– the creation of new blood cells — which in turn enable cancer . Without the recruitment of new blood vessels, cancer couldn't grow bigger than a millimeter. Tumor growth requires the assistance of other tissues in our body, and Dr. Erez's research implicating fibroblasts breaks new ground in science.

New avenues for drug research

CAFs appear to be able to recruit from the body that can enhance tumor growth, Dr. Erez explains. In addition, normal skin fibroblasts can be "educated" by cancer cells to express pro-inflammatory genes.

Armed with this information, Dr. Erez plans to study the molecular pathways that link tumor cells to their environments around the tumors, hoping to develop drug targets to disrupt any cellular processes that support tumor growth. Her research opens a new frontier, suggesting how inflammation in the body can be managed to reduce the growth and spread of cancer.

"My goal is to understand everything about the local environment where a tumor grows — what feeds it, what cells play a role, and how they work together –– to improve existing therapeutics, or to create a new cancer drug," she says.

Related Stories

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.