New research provides breakthrough in understanding common cancer

June 9, 2011

Researchers from the University of Sheffield have discovered valuable insight into how people develop B-cell lymphoma, one of the most common cancers in the UK.

The team, from the University's Institute for Cancer Studies and funded by and Lymphoma Research, Biotechnology and Biological Sciences Research Council (BBSRC) and Yorkshire , found that a mechanism different to that previously thought to be the cause of lymphoma may be responsible for the development of the disease.

Lymphoma is a type of cancer that affects the blood, originating in the lymph glands. are the in the human body that are responsible for producing to fight infections and provide long-term immunity. B-cell lymphomas include both Hodgkin's lymphomas and most non-Hodgkin's lymphomas.

Prior to this research, the main theory to explain the origins of lymphoma was the malfunction of a mechanism (somatic hypermutation) used by B-cells to modify the genes coding for antibodies. This mechanism is required to produce highly specific antibodies, but it also accidentally alters other genes, leading to lymphoma.

However, the team from the University knew that this theory only accounted for affecting a handful of genes, and the model could only explain certain types of lymphoma.

Led by Dr Thierry Nouspikel, the researchers discovered another mechanism, which potentially affects many more genes and can account for a wider palette of lymphomas. The research found that B-cells actually do not repair the bulk of their DNA and only take care of the few genes they are using. When the B-cells are inert in the blood flow, this is not a problem. However, when they receive a stimulation (e.g. an infection) they start to proliferate and then produce antibodies.

To proliferate they must replicate their DNA, and replication of damaged DNA results in the introduction of mutations, the accumulation of which can lead to lymphoma. Dr Nouspikel's team have designed a novel method to specifically detect such mutations, and have proved that they do occur in that have been implicated in lymphoma.

The researchers demonstrated that B-cells are deficient in one of the main DNA repair pathways, known as Nucleotide Excision Repair. This pathway repairs a lot of different DNA lesions, including UV-induced damage and chemical adducts (e.g. from air pollution and cigarette smoke). Their model therefore explains why strong UV exposure (e.g. unprotected sun bathing) is the number one environmental risk factor for lymphoma and also supports the evidence that exposure to air pollution and smoking are also risk factors.

Dr Nouspikel said: "Lymphoma is one of the ten most frequent cancers in adults in the UK, and the third among children. If we want to come up with efficient strategies for prevention and therapy, it is crucial to understand what causes it. The novel mechanism we have discovered potentially accounts for the development of many different types of . It may also explain why strong exposure to sunlight is the main environmental risk factor for this cancer."

Explore further: Experimental drug trial seeks to improve treatment for lymphoma

More information: The research is due for publication in Blood on 9 June 2011 and will also be published in Cell Cycle on 15 July 2011. To view the full research paper online, visit: bloodjournal.hematologylibrary … -2010-12-326637.long

Related Stories

Experimental drug trial seeks to improve treatment for lymphoma

August 11, 2017
Patients with a common type of fast-growing cancer are being given fresh hope in a new clinical trial.

Using miRNA to cure mature B cell neoplasia

August 9, 2017
Almost half of patients with mature B cell neoplasia are faced with the ineffectiveness of existing treatments. However, they may soon benefit from new therapeutic tools relying on miRNA—a small non-coding RNA molecule ...

Manmade peptides reduce breast cancer's spread

July 27, 2017
Manmade peptides that directly disrupt the inner workings of a gene known to support cancer's spread significantly reduce metastasis in a mouse model of breast cancer, scientists say.

Accounting for human immune diversity increases clinical relevance of fundamental immunological research

July 26, 2017
Mouse models have advanced our understanding of immune function and disease in many ways but they have failed to account for the natural diversity in human immune responses. As a result, insights gained in the lab may be ...

HDAC3 role in B-cell development

August 4, 2017
Histone deacetylases (HDACs) are enzymes that modulate gene expression and have important roles in development and disease. HDAC inhibitors are active against lymphoma, and understanding the roles of specific HDACs is important ...

Researchers identify biomarkers associated with chronic fatigue syndrome severity

July 31, 2017
Researchers at the Stanford University School of Medicine have linked chronic fatigue syndrome to variations in 17 immune-system signaling proteins, or cytokines, whose concentrations in the blood correlate with the disease's ...

Recommended for you

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.