3-D movie shows, for the first time, what happens in the brain as it loses consciousness

June 11, 2011
3-D movie shows, for the first time, what happens in the brain as it loses consciousness
Image reconstructed from measurements recorded using fEITER during awake conditions (left) and during the onset of anaesthesia (right). Credit: University of Manchester.

For the first time researchers have been able to watch what happens to the brain as it loses consciousness. Using sophisticated imaging equipment they have constructed a 3-D movie of the brain as it changes while an anaesthetic drug takes effect.

Brian Pollard, Professor of Anaesthesia at The University of Manchester (UK), will tell the European Anaesthesiology Congress in Amsterdam that the real-time 3-D images seemed to show that losing consciousness involves a change in electrical activity deep within the , changing the activity of certain groups of (neurons) and hindering communication between different parts of the brain.

He said the findings appear to support a hypothesis put forward by Professor Susan Greenfield, of the University of Oxford, about the nature of consciousness itself. Prof Greenfield suggests consciousness is formed by different groups of (neural assemblies), which work efficiently together, or not, depending on the available sensory stimulations, and that consciousness is not an all-or-none state but more like a dimmer switch, changing according to growth, mood or drugs. When someone is anaesthetised it appears that small neural assemblies either work less well together or inhibit communication with other neural assemblies.

"Our findings suggest that unconsciousness may be the increase of inhibitory assemblies across the brain's cortex. These findings lend support to Greenfield's hypothesis of neural assemblies forming consciousness," said Prof Pollard.

The team use an entirely new imaging method called "functional electrical impedance tomography by evoked response" (fEITER *), which enables high speed imaging and monitoring of electrical activity deep within the brain and is designed to enable researchers to measure .

The new device was developed by a multidisciplinary team drawn from the Schools of Medicine and Electrical and Electronic Engineering at The University of Manchester (UK) led by Professor Hugh McCann and with support from a Wellcome Trust Translation Award.

The machine itself is a portable, light-weight monitor, which can fit on a small trolley. It has 32 electrodes that are fitted around the patient's head. A small, high-frequency electric current (too small to be felt or have any effect) is passed between two of the electrodes, and the voltages between other pairs of electrodes are measured in a process that takes less than one thousandth of a second.

An "electronic scan" is thus carried out and the machine does this whole procedure 100 times a second. By measuring the resistance to current flow (electrical impedance), a cross sectional image of the changing electrical conductivity within the brain is constructed. This is thought to reflect the amount of in different parts of the brain. The speed of the response of fEITER is such that the evoked response of the brain to external stimuli, such as an anaesthetic drug, can be captured in rapid succession as different parts of the brain respond, thus tracking the brain's processing activity.

"We have looked at 20 healthy volunteers and are now looking at 20 anaesthetised patients scheduled for surgery," said Prof Pollard. "We are able to see 3-D images of the brain's conductivity change, and those where the patient is becoming anaesthetised are most interesting."

"We have been able to see a real time loss of consciousness in anatomically distinct regions of the brain for the first time. We are currently working on trying to interpret the changes that we have observed. We still do not know exactly what happens within the brain as unconsciousness occurs, but this is another step in the direction of understanding the brain and its functions."

The team at Manchester is one of many worldwide teams investigating electrical impedance tomography (EIT), but this is its first application to anaesthesia. Prof Pollard said that a huge amount of research still needed to be done to fully understand the role EIT could play in medicine.

"If its power can be harnessed, then it has the potential to make a huge impact on many areas of imaging in medicine. It should help us to better understand anaesthesia, sedation and unconsciousness, although its place in medicine is more likely to be in diagnosing changes to the brain that occur as a result of, for example, head injury, stroke and dementia.

"The biggest hurdle is working out what we are seeing and exactly what it means, and this will be an ongoing challenge," he concluded.

Related Stories

Recommended for you

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (3) Jun 11, 2011
Where is the video?
not rated yet Jun 11, 2011
It could be useful for military.
not rated yet Jun 11, 2011
Where is the video?

Thats why I"m here. wtf?
not rated yet Jun 11, 2011
Where is the video?

Thats why I"m here. wtf?

not rated yet Jun 12, 2011
Where is the video?

Thats why I"m here. wtf?


First 'edit', then upped.
Where do you think you are living? The U.S.?
not rated yet Jun 12, 2011
Alert! Alert! Spoiler ahead!

Brain specific estrogen bounded molecules conduction disruption first. (Loss of hearing and touch) Non estrogen molecular bounded (sites)neurons ( of Sight) last to be disrupted (show reduce activity.)

Regions allotted to sound and touch signal processing show the first signs of inactivity. These regions are the first to "return" after anesthesia recedes.

Please, not all at once! Thank you. Thank you. Thank you.
Your welcome.
Jun 13, 2011
This comment has been removed by a moderator.
not rated yet Jun 13, 2011


That's a good feeling. Seeing supporting evidence for Hypothesis, theory (I'll write this if no one else wants to) and prediction.

Kudos to all. All of this belongs to you. Enjoy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.