A new form of DNA

June 3, 2011 By Megan Fellman

(Medical Xpress) -- Northwestern University chemists have synthesized a new form of DNA, one that can begin to be used to create new gene regulation therapies, for the prevention or treatment of diseases such as cancer.

The spherical structures, composed entirely of , can naturally enter and effect gene knockdown. Current therapies require secondary agents to carry nucleic acids into cells, which cause problems in terms of toxicity, limiting their effectiveness.

“The beauty of this discovery is that, in principle, these constructs will lay the foundation for treating many forms of cancer, such as glioblastoma, where there are currently no good therapeutic approaches,” says Chad A. Mirkin, who led the research. “There also may be opportunities to use this approach to facilitate wound healing, a direction we are pursuing with Dr. Amy Paller, a colleague and world-renowned dermatologist at Northwestern’s Feinberg School of Medicine.”

The new approach to gene therapy also could be used to treat many neurological and cardiovascular diseases with known genetic origins, he says.

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern’s International Institute for Nanotechnology.

He and his colleagues demonstrated that when is arranged in the form of a densely packed, highly oriented nanostructure, it will enter cells naturally. The design of the core-free polyvalent nucleic acid nanostructures (PNANs), which comprise only cross-linked and oriented nucleic acids, eliminate the need for secondary agents with their associated toxic effects.

The research, which represents an entirely new strategy in the gene regulation field, is published by the Journal of the American Chemical Society (JACS).

Gene regulation is a therapeutic approach that targets genetic signals in cells. The idea is that if you can get DNA or RNA into a cell, you can selectively turn off genetic switches associated with disease. The trick is learning how to get it to the correct cells, to get into the cells and to do so in a non-toxic manner. The new nanostructures solve most of these problems.

The PNANs are little hollow nanopods of DNA or RNA crosslinked at the base, an arrangement that leads to rapid cellular uptake. They are able to enter cells easily because the nanostructures pick up proteins that facilitate endocytosis, the process by which cells absorb molecules by engulfing them. Other approaches rely on positively charged polymers, peptides or viruses to deliberately introduce nucleic acids into cells.

“One can now begin to create carrier-free gene regulation therapies based on these nanostructures that are non-toxic and more effective than what is currently available,” says Mirkin, who is co-director of the Northwestern University Center of Cancer Nanotechnology and a member of the Robert H. Lurie Comprehensive Center of Northwestern University.

Related Stories

Recommended for you

Comparison of screening recommendations indicates annual mammography

August 21, 2017
When to initiate screening for breast cancer, how often to screen, and how long to screen are questions that continue to spark emotional debates. A new study compares the number of deaths that might be prevented as a result ...

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Scientists develop blood test that spots tumor-derived DNA in people with early-stage cancers

August 16, 2017
In a bid to detect cancers early and in a noninvasive way, scientists at the Johns Hopkins Kimmel Cancer Center report they have developed a test that spots tiny amounts of cancer-specific DNA in blood and have used it to ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rsklyar
not rated yet Jul 20, 2011
del

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.