Drug development cycle shortened with new silicon-based screening tool

July 20, 2011 By Lee Swee Heng
Conventional approach is a slow process where a glass micropipette is used by an expert to patch cells on a Petri dish. Credit: Institute of Microelectronics

Researchers from A*STAR Institute of Microelectronics (IME) have developed a lateral silicon-based drug screening tool that has demonstrated simultaneous capture of 12 individual cells – 12 times higher throughput than conventional patch clamping. The device can be scaled up to allow 1536 cell-recordings simultaneously, permitting 16 times higher throughput than existing planar patch clamp approach. The chip enables compact design and automation, thanks to the lateral layout that allows microfluidic integration. When tested with two different anti-diabetic drugs, corresponding electrophysiological readings could be determined by the device, showing its potential for multiple drug screening. With automation, the proposed device can dramatically shorten drug development cycle for rapid screening of ion-channel drug candidates. The world-wide ion channel drug market is estimated to be worth USD 12 billion.

The ion channels in human cells play a central role in controlling a variety of physiological processes in our body – which is why ion channels are important molecular targets in preclinical discovery. The measurement of the electrophysiological activity of the across the is a crucial step in screening potential drug candidates. Patch clamping is the standard technique for ion channel assay and it is traditionally a laborious and skill-intensive process that limits the throughput of electrophysiology measurement, which is a bottleneck for drug discovery process.

Dr. Tushar Bansal, IME scientist leading this effort, said, “The realisation of our device using as the primary material offers cost advantage over existing glass-based planar chip design, given silicon’s amenability for mass fabrication by standard processes. We are currently working with our industry counterparts to take this project to the next level.”

(From left to right) a planar aperture, or a lateral aperture is utilized to patch a cell suspended in extracellular solution. Credit: Institute of Microelectronics

IME’s silicon-based device consists of a silicon substrate with 1536 inlets. The substrate holds the cell into position, followed by the application of suction through the side channels to form a tight seal for electrical measurement.

On IME’s new silicon-based drug , Dr. Weiping Han, Head, Laboratory of Metabolic Medicine at Singapore Bioimaging Consortium, said, “The successful development of the multi-channel patch clamp will likely result in a technical platform with high potential for commercialisation. It may be used by pharmaceutical and biotech companies for , and by academic researchers for mechanistic studies.”

Professor Dim-Lee Kwong, Executive Director of IME said, “The pre-clinical drug screening process is an arduous one, which IME hopes to address through this project. Our multidisciplinary efforts to tackle the throughput and cost issues will translate to faster access to new and more affordable drugs when they hit the market.”

Related Stories

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.