Discovery helps explain why chemo causes drop in platelet numbers

September 25, 2011, Walter and Eliza Hall Institute
Healthy bone marrow (top) contains many cell types including platelet-producing megakaryocytes (brown). The pro-survival protein Bcl-xL is important for keeping megakaryocytes alive. After chemotherapy (below) many cell types in the bone marrow, including megakaryocytes, are killed through a process requiring the pro-death proteins Bax and Bak. Platelet numbers can be depleted in the blood by chemotherapy because of its toxicity for both platelets and megakaryocytes. Credit: Walter and Eliza Hall Institute of Medical Research

Scientists at the Walter and Eliza Hall Institute have identified a way that chemotherapy causes platelet numbers to drop, answering in the process a decade-old question about the formation of platelets, tiny cells that allow blood to clot.

Platelets are formed by a process called 'shedding' where small fragments break off megakaryocytes (large cells normally found in the ).

Drs Emma Josefsson, Chloé James and Benjamin Kile from the institute's Molecular Medicine and Cancer and Haematology divisions have been investigating how the survival of platelet- forming megakaryocytes is controlled at a molecular level.

The life-or-death decisions of cells are controlled by the Bcl-2 family of proteins. Some 'pro-death' Bcl-2 family proteins cause cells to die, while an opposing 'pro-survival' faction prevents cell death, allowing to survive.

In the past decade it has been thought that platelets are formed by megakaryocytes through a process similar to cell death, Dr Josefsson said. "Our research tested this assumption by examining the molecules that are required for programmed . We found that, at a molecular level, platelet formation does not occur by a death-like process.

"We found that pro-death Bcl-2 family proteins were not required for platelet formation from megakaryocytes," Dr Josefsson said. "In fact, pro-survival Bcl-2 family proteins are essential for keeping megakaryocytes alive so they can make platelets."

Low platelet numbers are a side-effect of chemotherapy and, whilst this has long been ascribed to the death of megakaryocytes and their precursors, the mechanisms responsible have remained unclear. The research team showed that chemotherapy kills megakaryocytes by its action on Bcl-2 family proteins, Dr Josefsson said. "Our work has shown that activates 'pro-death' Bcl-2 proteins to kill megakaryocytes, meaning patients are less capable of producing platelets as they recover from cancer treatment." The research was published today in the Journal of Experimental Medicine.

Institute scientist Professor Don Metcalf has researched blood formation for the past 50 years and was part of the research team. "For the past decade many researchers around the world have been wondering what role Bcl-2-family proteins play in platelet formation," he said. "This study is important for resolving a longstanding debate about platelet formation, and in the long term may lead to new strategies to prevent chemotherapy-induced thrombocytopenia (a deficiency in )."

Explore further: Single drug, soft environment can increase platelet production

Related Stories

Single drug, soft environment can increase platelet production

July 8, 2011
(Medical Xpress) -- Humans produce billions of clot-forming platelets every day, but there are times when there aren’t enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania ...

Single drug and soft environment can increase platelet production: research

July 13, 2011
Humans produce billions of clot-forming platelets every day, but there are times when there aren't enough of them, such as with certain diseases or during invasive surgery. Now, University of Pennsylvania researchers have ...

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.