Neurosurgeons use adult stem cells to grow neck vertebrae

September 6, 2011

Neurosurgery researchers at UC Davis Health System have used a new, leading-edge stem cell therapy to promote the growth of bone tissue following the removal of cervical discs -- the cushions between the bones in the neck -- to relieve chronic, debilitating pain.

The procedure was performed by associate professors of neurosurgery Kee Kim and Rudolph Schrot. It used bone marrow-derived to promote the growth of the bone tissue essential for following surgery, as part of a nationwide, multicenter clinical trial of the therapy.

Removal of the cervical disc relieves pain by eliminating friction between the and/or nerve compression. Spinal fusion is used following surgery for , where the cusioning has worn away, leaving bone to rub agains bone and herniated discs, where the discs pinch or compress nerves.

"We hope that this investigational procedure eventually will help those who undergo spinal fusion in the back as well as in the neck," said Kim, who also is chief of spinal neurosurgery at UC Davis. "And the knowledge gained about stem cells also will be applied in the near future to treat without surgery those suffering from back pain."

Millions of Americans are affected by spine diseases, with approximately 40 percent of all spinal fusion surgery performed for cervical spinal fusion. Some 230,000 patients are candidates for spinal fusion, with the numbers of potential patients increasing by 2 to 3 percent each year as the nation's population ages.

"This is an exciting clinical trial to test the ability of the bone-forming stem cells from healthy donors to help patients with spinal disease," said Jan Nolta, director of the UC Davis Institute for Regenerative Cures.

"For the past 50 years, bone marrow-derived stem cells have been used to rebuild patients' blood-forming systems. We know that subsets of stem cells from the marrow also can robustly build bone. Their use now to promote vertebral fusion is a new and extremely promising area of clinical study," she said.

The stem cell procedure at UC Davis took place early in August. The patient was a 53-year-old male from the Sacramento region with degenerative disc disease.

In the surgery, called an anterior cervical discectomy, a or multiple discs are removed via an incision in the front of the neck. The investigational stem cell therapy then is applied to promote fusion of the vertebrae across the space created by the disc removal.

The stem cells are derived from a healthy single adult donor's , and thus are very homogenous, Kim said. They are grown in culture to high concentration with minimal chance for rejection by the recipient, he said.

Adequate spinal fusion fails to occur in 8 to 35 percent or more of patients, and persistent pain occurs in up to 60 percent of patients with fusion failure, which often necessitates additional surgery.

"A lack of effective new bone growth after spine fusion surgery can be a significant problem, especially in surgeries involving multiple spinal segments," said Schrot, co-principal investigator for the study. "This new technology may help patients grow new bone, and it avoids harvesting a bone graft from the patient's own hip or using bone from a deceased donor."

Current methods of promoting spinal fusion include implanting from the patient's hip or a cadaver to encourage bone regrowth as well as implanting bone growth-inducing proteins. However, the Food and Drug Administration has not approved the use of bone morphogenetic proteins for cervical spinal fusion. Their use has been associated with life-threatening complications, particularly in the neck.

The leading-edge stem cell procedure is part of a prospective, randomized, single-blinded controlled study to evaluate the safety and preliminary efficacy of an investigational therapy: modified bone marrow-derived combined with the use of a delivery device as an alternative to promote and maintain spinal fusion.

The study includes 10 investigational centers nationwide. The UC Davis Department of Neurological Surgery anticipates enrolling up to 10 study participants who will be treated with the and followed for 36 months after their surgeries. A total of 24 participants will be enrolled nationwide.

Explore further: UCSF analysis shows newer surgery for neck pain may be better

Related Stories

UCSF analysis shows newer surgery for neck pain may be better

April 11, 2011
A new surgery for cervical disc disease in the neck may restore range of motion and reduce repeat surgeries in some younger patients, according to a team of neurosurgeons from the University of California, San Francisco (UCSF) ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
3 / 5 (2) Sep 06, 2011
Cool. Finally Republicans can grow a spine.
PaulRC
5 / 5 (1) Sep 06, 2011
fine, but what about regrowing the cartilage and forgetting about fusion altogether? relieving pain is good, but being whole is better.

I'm sure they'll be doing that eventually.
XQuantumKnightX
not rated yet Sep 06, 2011
It does not make sense!!! Why invest all the money in to growing a crutch rather than the actual needed solution: cervical discs? It has been proven that any organ can be regrown from stem cells so why not fix the issue? This seem to be the same old milk the cow syndrome (profits from treatments).
maxcypher
not rated yet Sep 06, 2011
Less than a month ago I read about this nano-material gel that is real close to replacing cartilage. They expect to be able to make a small hole behind the spine and inject the gel in liquid form where it's needed. It gels up and then you have a disc that isn't bio-reactive. I can't remember where I read it.
Sinister1811
1 / 5 (2) Sep 12, 2011
They'd better hurry up with this research. There are a few people living without a spine..

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.