Inflammation controlled differently in brain and other tissues, study finds

October 20, 2011, The Scripps Research Institute

A team led by scientists from The Scripps Research Institute has identified a new metabolic pathway for controlling brain inflammation, suggesting strategies for treating it.

The new report, which appears in the October 20, 2011 edition of , focuses on the type of inflammation normally treatable with non-steroidal anti-inflammatory drugs (), such as aspirin or ibuprofen.

The study shows this type of inflammation is controlled by different enzymes in different parts of the body.

"Our findings open up the possibility of anti-inflammatory drugs that are more tissue-specific and don't have NSAIDs' side effects," said the study's senior author Benjamin F. Cravatt, chair of the Department of Chemical Physiology and member of the Skaggs Institute for and the Dorris Neuroscience Center at Scripps Research.

A Serendipitous Discovery

The serendipitous discovery originated with an attempt by Cravatt and his colleagues to develop a new kind of pain-relieving drug targeting an known as monoacylglycerol lipase (MAGL). This enzyme normally breaks down a natural pain-relieving known as 2-AG, a "cannabinoid" molecule whose actions are mimicked by certain compounds within marijuana. To reduce the rate of 2-AG breakdown, allowing 2-AG levels to rise and provide more pain relief, the Cravatt lab developed a powerful and selective MAGL-inhibiting compound, which the scientists described in 2009 and are still investigating as a possible pain drug.

In the course of this research, the scientists tested their MAGL inhibitor on mice and also engineered mice that genetically lack MAGL. "We noticed that the brains of the MAGL-inhibited mice showed reduced levels of arachidonic acid, a key precursor molecule for inflammatory lipids," said Daniel Nomura, a former member of the Cravatt lab who is currently assistant professor in the Department of Nutritional Science & Toxicology at the University of California, Berkeley. Nomura is the paper's co-corresponding author with Cravatt, and co-first author with Bradley E. Morrison of Scripps Research.

Arachidonic acid had been thought to originate similarly throughout the body, from a process involving fat molecules and phospholipase A2 enzymes. To their surprise, the researchers found that in the brain, arachidonic acid production is controlled chiefly by MAGL.

In effect, the enzyme takes pleasure-associated 2-AG, which is found in high concentrations in the brain, and turns it into arachidonic acid—the precursor for pain- and inflammation-causing prostaglandin molecules. The researchers showed that blocking the activity of MAGL, or genetically eliminating it, shrinks the pool of arachidonic acid and prostaglandins in mouse brains, effectively limiting the possibility of .

Providing a Protective Effect

To further test this effect, the researchers set up two standard models of brain inflammation in lab mice. In one, they tried to induce inflammation with lipopolysaccharide, a highly pro-inflammatory molecule found in bacteria. In the other, they used the toxin MPTP, which induces brain inflammation and preferentially kills the same muscle-regulating neurons lost in Parkinson's disease.

"In both models, reducing MAGL – genetically or with our MAGL-inhibitor –provided the animals with protection from neuroinflammation," said Nomura, who is continuing to research the system at UC Berkeley.

NSAIDs such as ibuprofen are already used to reduce the inflammation that originates from arachidonic acid. They work by inhibiting the cyclo-oxygenase enzymes that convert arachidonic acid into prostaglandins. But NSAIDs also inhibit cyclo-oxygenase enzymes that protect the lining of the gastrointestinal tract. They thus can cause gastrointestinal bleeding, among other adverse side effects. That greatly limits their potential usefulness. In the brain, where MAGL is the major controller of arachidonic acid levels, blocking the enzyme could be a better strategy. Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury all involve harmful but potentially treatable brain inflammation.

"In principle, with a MAGL inhibitor we could avoid the gastrointestinal toxicity that's associated with NSAIDs while still maintaining the anti-inflammatory effect," said Nomura.

Unexpected Elements

The new findings also are important from a basic science perspective because they advance the understanding of prostaglandin-mediated inflammation. Phospholipase A2 enzymes have long been considered the dominant producers of arachidonic acid, and thus a major element in prostaglandin-mediated inflammation throughout the body.

Nomura, Cravatt, and their colleagues confirmed in their experiments that phospholipase A2 enzymes play a major role in arachidonic acid production in the gut and spleen. However, in the , the MAGL enzyme was the principal regulator, with phospholipase A2 enzymes making a more limited contribution. MAGL also regulated arachidonic acid and prostaglandins in liver and lungs.

"Biological pathways that we think we understand sometimes turn out to have these unexpected, tissue- or context-specific elements, which is why it's so important to follow up on clues such as the ones we found," Cravatt said.

Explore further: Researchers define new painkilling chemical pathway

More information: "Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation" Science Express, October 20, 2011.

Related Stories

Researchers define new painkilling chemical pathway

November 23, 2008
Marijuana kills pain by activating a set of proteins known as cannabinoid receptors, which can also regulate appetite, inflammation, and memory. The body also has chemicals known as endocannabinoids that naturally activate ...

Study puts a new spin on ibuprofen's actions

September 25, 2011
Ibuprofen, naproxen, and related non-steroidal anti-inflammatory drugs (NSAIDs) – the subjects of years of study – still have some secrets to reveal about how they work.

New study sheds light on painkilling system in brain

August 24, 2010
Repeatedly boosting brain levels of one natural painkiller soon shuts down the brain cell receptors that respond to it, so that the painkilling effect is lost, according to a surprising new study led by Scripps Research Institute ...

Scientists find cancer cells co-opt fat metabolism pathway to become more malignant

January 12, 2010
An enzyme that normally helps break down stored fats goes into overdrive in some cancer cells, making them more malignant, according to new findings by a team at The Scripps Research Institute.

Lack of omega-6 fatty acid linked to severe dermatitis

April 12, 2010
University of Illinois scientists have learned that a specific omega-6 fatty acid may be critical to maintaining skin health.

Scientists identify role of fatty acids in Alzheimer's disease

October 19, 2008
Scientists at the Gladstone Institute of Neurological Disease (GIND) and the University of California have found that complete or partial removal of an enzyme that regulates fatty acid levels improves cognitive deficits in ...

Recommended for you

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018
Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, ...

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018
New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes—the one-of-a-kind microbial communities that live in our gastrointestinal tracts—to ...

A new defender for your sense of smell

September 18, 2018
New research from the Monell Center increases understanding of a mysterious sensory cell located in the olfactory epithelium, the patch of nasal tissue that contains odor-detecting olfactory receptor cells. The findings suggest ...

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

nanotech_republika_pl
5 / 5 (1) Oct 20, 2011
Maybe MAGL enzyme should help with migraines too, which are linked to brain inflammation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.