Changing the locks: HIV discovery could allow scientists to block virus's entry into cell nucleus

December 8, 2011

Scientists have found the 'key' that HIV uses to enter our cells' nuclei, allowing it to disable the immune system and cause AIDS The finding, published today in the open access journal PLoS Pathogens, provides a potential new target for anti-AIDS drugs that could be more effective against drug-resistant strains of the virus.

HIV is transmitted through bodily fluids, primarily infected blood or semen. Once inside the bloodstream, the virus infects key components of the immune system including cells known as macrophages. It works its way into the nucleus of the macrophages, where it integrates itself into the cell's DNA, allowing it to replicate and spread throughout the body.

To access the DNA, the HIV must pass through the , a gateway into the nucleus. Until now, the mechanism that allows the virus to pass through this gateway was unknown. Now, a team of scientists from UCL (University College London), the University of Pennsylvania School of Medicine and the Laboratory of in Cambridge, has identified a vital component of this mechanism. A part of the called the , acting like a key, binds to Nup358, a protein on the nuclear pore complex, unlocking the gateway and granting the virus access to the DNA.

Professor Greg Towers, a Wellcome Trust Senior Research Fellow at UCL, who led the research, says: "It's thirty years since the first cases of AIDS were reported and whilst great progress has been made in developing and improving for treating HIV infection, the virus often develops resistance against these drugs making it very difficult to treat. It's very important that we stay one step ahead with new .

"In our research, we have found the 'lock and key' that allow HIV to enter a cell's nucleus. Once inside, the virus can begin to replicate itself, spreading almost unchecked throughout the body. If we were able to block this entry with a drug – in effect, to change the locks – then we could stop this spread."

Targeting proteins in the host, rather than in the virus itself, has added benefits, explains first author Dr Torsten Schaller.

"Almost all HIV treatments target the virus itself," he explains. "We know that HIV can easily evolve and change, which means that the virus can become immune to the effects of the drugs, rendering them ineffective. But if we can develop drugs which target proteins in the infected person's body, the virus will struggle to evolve to get around this."

According to the World Health Organization, 33.3 million people were living with HIV in 2009, of which 2.6 million were newly infected. Without treatment, the virus causes potentially fatal damage to the immune system, leading to opportune infections. Deaths from AIDS-related illnesses are the third most common cause of death in low-income countries, killing around 1.8 million people a year worldwide.

The research was funded by the Wellcome Trust, the National Institute of Health Research and the Medical Research Council in the UK, and the National Institutes of Health, the University of Pennsylvania Center for AIDS Research, and the Pennsylvania Department of Health in the US.

Professor Danny Altmann, Head of Pathogens, Immunology and Population Health at the Wellcome Trust, said: "This is exciting work into somewhat uncharted territory. Professor Towers and colleagues have taken a big step towards modelling how HIV enters and integrates itself into the cell's DNA and then uses it to replicate. It offers the prospect of novel ways to try and combat ."

Explore further: Drug designer: New tool reveals mutations that cause HIV-drug resistance

More information: Schaller, T et al. HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency. PLoS Pathogens; 8 December 2011.

Related Stories

Drug designer: New tool reveals mutations that cause HIV-drug resistance

July 8, 2011
Protease inhibitor drugs are one of the major weapons in the fight against HIV, the virus that causes AIDS, but their effectiveness is limited as the virus mutates and develops resistance to the drugs over time. Now a new ...

Recommended for you

Study suggests a way to stop HIV in its tracks

December 1, 2017
When HIV-1 infects an immune cell, the virus travels to the nucleus so quickly there's not enough time to set off the cell's alarm system.

Discovery puts the brakes on HIV's ability to infect

November 30, 2017
Viewed with a microscope, the virus faintly resembles a pineapple—the universal symbol of welcome. But HIV, the virus that causes AIDS, is anything but that. It has claimed the lives of more than 35 million people so far.

Rising levels of HIV drug resistance

November 30, 2017
HIV drug resistance is approaching and exceeding 10% in people living with HIV who are about to initiate or reinitiate first-line antiretroviral therapy, according to the largest meta-analysis to date on HIV drug resistance, ...

Male circumcision and antiviral drugs appear to sharply reduce HIV infection rate

November 29, 2017
A steep drop in the local incidence of new HIV infections accompanied the rollout of a U.S.-funded anti-HIV program in a large East-African population, according to a study led by researchers at Johns Hopkins Bloomberg School ...

Combination HIV prevention reduces new infections by 42 percent in Ugandan district

November 29, 2017
A study published today in the New England Journal of Medicine provides real-world evidence that implementing a combination of proven HIV prevention measures across communities can substantially reduce new HIV infections ...

Research on HIV viral load urges updates to WHO therapy guidelines

November 24, 2017
A large cohort study in South Africa has revealed that that low-level viraemia (LLV) in HIV-positive patients who are receiving antiretroviral treatment (ART) is an important risk factor for treatment failure.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.