Building bone from cartilage

February 14, 2012

A person has a tumor removed from her femur. A soldier is struck by an improvised explosive device and loses a portion of his tibia. A child undergoes chemotherapy for osteosarcoma but part of the bone dies as a result.

Every year, millions of Americans sustain that don't heal or lose bone that isn't successfully grafted. But a study presented at the Orthopaedic Research Society (ORS) 2012 Annual Meeting in San Francisco offers new hope for those who sustain these .

Orthopaedic researchers with the University of California, San Francisco (UCSF), Institute, have found a very promising, novel way to regenerate bone. "Cartilage graft induces bone that actually integrates with the host bone and vascularizes it," said Ralph S. Marcucio, PhD, Associate Professor, UCSF School of Medicine.

Cartilage graft is very different than the current methods used for bone grafting—autograft bone (a person's own bone) or allograft materials (donor bone). For various reasons, these two grafting techniques can result in poor graft integration and osteonecrosis.

"With millions of bone grafting procedures performed every year in just the United States, developing improved technologies could directly enhance patient care and clinical outcomes," Dr. Marcucio said.

Chelsea S. Bahney, PhD, Postdoctoral Scholar, UCSF School of Medicine, concedes their approach is less orthodox. "It is not the pathway that most people think about, but it made a lot more sense to follow the normal developmental mechanism."

"This cartilage is naturally bioactive. It makes factors that help induce vascularization and bone formation," added Dr. Bahney. "When people use a bone graft, it is often dead bone which requires something exogenous to be added to it or some property of the matrix in the graft."

Through a process called endochondral ossification, cartilage grafts produce new tissue that is very similar to the person's own bone. Without additional properties to it, the researchers found the cartilage graft integrated well and was fully vascularized.

"We're just taking a very similar cartilage that can induce bone formation, putting it into a bone defect and letting it just do its thing," Dr. Marcucio said.

In the study, the researchers chose a non-stabilized tibial fracture callus as a source of a cartilage graft. "Healing of the transplanted cartilage grafts supported our hypothesis by producing a well-vascularized bone that integrated well with the host," Dr. Bahney said.

"A cartilage could offer a promising alternative approach for stimulating bone regeneration," Dr. Marcucio said. "Future work will focus on developing a translatable technology suitable for repairing through a intermediate at a clinical level."

Related Stories

Recommended for you

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.