Brain mechanisms link foods to rising obesity rates

February 7, 2012

An editorial authored by University of Cincinnati (UC) diabetes researchers to be published in the Feb. 7, 2012, issue of the journal Cell Metabolism sheds light on the biological factors contributing to rising rates of obesity and discusses strategies to reduce body weight.

According to the U.S. Centers for Disease Control, about one-third of U.S. adults are obese, a number that continues to climb.

"While we don't usually think of it this way, body weight is regulated. How much we weigh is influenced by a number of biological systems, and this is part of what makes it so hard for people to lose weight and keep it off," says Randy Seeley, PhD, Donald C. Harrison Endowed Chair, director of the Cincinnati and Obesity Center and author on the paper along with Karen Ryan, PhD, an assistant professor in endocrinology, diabetes and metabolism at UC.

"To understand the obesity epidemic, we must figure out how our environment alters these biological systems to encourage weight gain."

Seeley says a big part of the environment that encourages weight gain is the availability and of calorically dense, high-fat foods—in particular, what we eat can alter the brain regions that regulate body weight.

"Leptin is a key hormone that is secreted from fat tissue, or adipose tissue, and its main function is to inhibit appetite," Seeley says. "Via a number of molecular mechanisms, eating a high-fat diet reduces the actions of leptin in the brain. This miscommunication can lead to increased food intake and ."

"Evolutionary speaking, we are designed to want to eat foods that are high in fat and gain weight because it made it easier to survive times when food was not available," he continues. "However, that is no longer a real concern since food is almost always available, but we still have a biological desire to eat these calorically dense foods. So, how do we intervene and change this drive?"

Seeley says there are several key points in successful therapeutic interventions for the population facing social, financial and health consequences of obesity.

"The key issue is to find ways to take these that usually make it hard to lose weight and make them work for us to so that it is easier for obese individuals to lose weight," he says. "As we understand the molecular interaction between what we eat and these brain circuits that regulate our body weight, we can design interventions that reduce the that our bodies defend. This will mean that people trying to lose weight would be able to work with their biology rather than trying to use will power to overcome their biology that pushes them back to their obese state. Such an endeavor will ultimately require a wide range of scientists from different fields to reduce both the human and monetary costs of the ."

Explore further: System in brain -- target of class of diabetes drugs -- linked to weight gain

Related Stories

System in brain -- target of class of diabetes drugs -- linked to weight gain

May 1, 2011
University of Cincinnati (UC) researchers have determined why a certain class of diabetes drugs leads to weight gain and have found that the molecular system involved (PPAR-γ found in the brain) is also triggered by ...

Voluntary exercise by animals prevents weight gain, despite high-fat diet

May 18, 2011
(Medical Xpress) -- University of Cincinnati (UC) researchers have found that animals on a high-fat diet can avoid weight gain if they exercise.

Another clue to how obesity works

October 14, 2011
(Medical Xpress) -- The effects of obesity - both on our bodies and on the health budget - are well known, and now, scientists are getting closer to understanding how the disease progresses, providing clues for future treatments.

Recommended for you

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Skepticus
not rated yet Feb 07, 2012
Surprise, surprise! Eating more than the body needs leads to weight gain! A sure-fire Nobel prize for this momentous finding.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.