Researchers weigh methods to more accurately measure genome sequencing

February 3, 2012

Lost in the euphoria of the 2003 announcement that the human genome had been sequenced was a fundamental question: how can we be sure that an individual's genome has been read correctly?

While the first full, individual genome was sequenced a decade ago, given the vast across the world's seven billion people, not to mention the differences in makeup even among close relatives, the question of accurate sequencing for individuals has continued to vex researchers.

With companies now projecting they can sequence a genome for a $1,000, down from $25,000 just a few years ago, and efforts to develop "personalized" medicines, this matter is taking on increased significance in today's marketplace. These cheaper endeavors rely on newer technologies, which assume that scientists can continue to use the standard shotgun approach of randomly chopping down the genome into smaller pieces and then reassembling them algorithmically. Specifically, today's lower cost is achieved by breaking the DNA into even tinier pieces and rapidly and cheaply reading a massive amount of them. But it is not clear how to assess the accuracy of the newer assembly algorithms and the basic shotgun approach, especially if the accuracy of the earlier is questionable.

Among the particular challenges in confirming the accuracy of the sequencing of an individual's genome is matching a person's phenotype, or physical trait, with his or her , or . This has served, in particular, as a barrier to successful development of personalized medicines, which were predicted shortly after the first sequencing of the , but have yet to truly materialize.

In an article in the journal PLoS One, researchers at New York University's Courant Institute of evaluate some current methods to sequence individual genomes—a study that serves as a "stress test" of the efficacy of these practices.

The researchers employed testing procedures that aim to identify key, or representative, features of the genome as well as how each of these features is related to others.

"Most current technologies, when assembling a genome, make several kinds of mistakes when they encounter a repeated region—where a substring of the letters that make up strands re-occur in many locations in the genome," explained Bud Mishra, a professor of computer science and mathematics and the study's senior author. "The input random reads tend to collect in one such location, and also show much higher discrepancies among themselves."

To test the viability of these procedures, the NYU researchers relied on a collection of features from an open-source software, AMOS, developed by a public consortium of genomicists and bioinformaticists. If a method has accurately sequenced an individual's entire genome, the researchers hypothesized, then the components of that method's creation should "fit together," and will be consistent with other auxiliary data like "mate pairs," "optical maps," or "strobed sequences," all of which constitute long-range information from the genome. Currently, the use of mate pairs is quite common in sequence assembly and validation algorithms, but not the other two.

While they found shortcomings in all examined methods for sequencing an individual's genome, some assemblers showed promise. The NYU researchers' conclusions were derived from a procedure called Feature-Response Curve (FRCurve), which effectively shows a global picture of how different assemblers are able to deal with different regions and different structures in a large complex genome. In this way, it also points out how an assembler might have traded off one kind of quality measure at the expense of another kind. For instance, it shows how aggressively a genome assembler might have tried to pull together a group of genes into a contiguous piece of the genome, while incorrectly rearranging their correct order and copy-numbers.

"Such errors have important consequences, especially if the technology is being used to study the genome of a tumor, which often can be highly heterogeneous, making each tumor cell's rearranged and mutated very differently from its neighbors'," explained Mishra.

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.