New point of attack for breast cancer with poor prognosis

March 5, 2012
New point of attack for breast cancer with poor prognosis

(Medical Xpress) -- Scientists from the Friedrich Miescher Institute for Biomedical Research describe how the protein phosphatase SHP2 promotes breast cancer with poor prognosis. As they report in the latest issue of Nature Medicine, SHP2 is necessary for the maintenance of the few tumor initiating cells (TICs) in a breast tumor. These cells are thought to sustain the growth of the tumor, promote metastasis and lead to relapses.

A few cells can wreak deadly havoc. This population of cells can not only initiate cancer, it may, in some tumor types, also be the one to promote growth, resist therapy, or cause relapse. In recent years, these so-called tumor initiating cells (TICs) have thus moved into the focus of attention because of their promise for therapeutic intervention: TICs seem to be the reason why patients with some cancers do not react to therapy or relapse quickly after remission, and TICs seem to be more abundant in aggressive and refractory cancers. Unfortunately, knowledge about the signaling pathways controlling the functions of TICs is only starting to become available.

The fundamental role of SHP2

In a study, Mohamed Bentires-Alj and scientists from his group at the Friedrich Miescher Institute for Biomedical Research identified now an important player in the signaling cascades governing TICs. The SHP2 plays a fundamental role in breast cancer proliferation, invasion and metastasis. When the scientists depleted SHP2 from with a small hairpin RNA, it decreased proliferation and invasiveness in 3D cultures, blocked and reduced metastasis. What is more they showed in a xenograft model that SHP2 depletion eradicated TICs as well. "We believe that one should not only target the bulk of the tumor but also the tumor initiating cells," comments Bentires-Alj. "By better understanding the signaling events governing tumor initiating cells, we hope to develop new, more efficacious, therapeutic approaches."

Labeled for invasive behavior and poor prognosis

When looking at the molecular signaling events after SHP2 depletion, the scientists realized that SHP2 activates transcription factors that are usually associated with stem cells. Together with Michael Stadler, the head of bioinformatics at the FMI, they further identified what they called "signature genes" that are being co-overexpressed in the presence of SHP2. These genes are activated in a large subset of primary breast tumors associated with invasive behavior and .

"The discovery of the gene signature which is induced by SHP2 in breast tumors may provide an important readout for SHP2 activity, thus allowing the identification of tumors that are likely to respond to SHP2-targeted therapy," said Nicola Aceto, first author of the publication.

"Now that we have elucidated the critical role SHP2 plays in tumor initiating cells, we are eager to see our basic research findings translated into effective therapies. To this end selective inhibitors should be developed and tested. In general, our understanding of cancer over the last decades holds promises for better therapies. It is thus very important that basic scientists, industry and clinicians work together to help these to bear fruit," said Bentires-Alj.

Explore further: New breast cancer model of mutant PI3K recapitulates features of human breast cancer

More information: Aceto N, et al. (2012) Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, doi:10.1038/nm.2645

Related Stories

New breast cancer model of mutant PI3K recapitulates features of human breast cancer

July 12, 2011
Scientists from the Friedrich Miescher Institute for Biomedical Research have shown that a mutation in the lipid kinase PI3K, which occurs in about 30% of human breast cancers, itself evokes different forms of breast cancer. ...

A gene that fights cancer, but causes it too

May 16, 2011
An international team of researchers, led by scientists at the University of California, San Diego School of Medicine, and the Eastern Hepatobiliary Surgery Hospital in China, say a human gene implicated in the development ...

Recommended for you

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.