Genome-wide study reveals how key immune sensors arrive at the front lines of infection

March 14, 2012, Sanford-Burnham Medical Research Institute

In a healthy immune system, invading pathogens trigger a cascade of alerts and responses to fight off the infection. Sensors called toll-like receptors, or TLRs, act as one of the first lines of defense. Two of these sensors, known as TLR7 and TLR9, specifically recognize and respond to microbial RNA and DNA, respectively. But what determines how these TLRs get where they need to be and sound the alarm for pathogen infection?

To answer this question, a team led by Sumit Chanda, Ph.D. and colleagues at Sanford-Burnham Medical Research Institute (Sanford-Burnham) used a technique known as (RNAi) to silence each gene in the one by one. In doing so, they were able to determine which genes are crucial for TLR7 and TLR9 functions and which are dispensable. In their study, published March 14 in Cell Host & Microbe, the team identified 190 proteins that contribute to our ability to detect and respond to microbial infection. These findings could help scientists develop new strategies to manipulate immune responses for treatment of autoimmune disorders and microbial infections.

Cellular sentinels

While most TLRs sit on the cell's surface, monitoring the surrounding environment for signs of infection, TLR7 and TLR9 are found in the cell's endosomes, membrane-bound compartments that normally shuttle proteins from one place to another. During infection, many bacteria and viruses use endosomes to gain access to cellular machinery and hide from other components of the body's .

"Our cells use TLR7 and TLR9 as policemen to inspect the endosomes, a critical gateway for a microbe's border crossing into the cell," said Chanda, associate professor in Sanford-Burnham's Infectious and Inflammatory Disease Center and senior author of the study. "These receptors can initiate cellular communications that set an anti-microbial defense mechanism into motion, both in the cell that's being invaded and in the cells around it. In this study, we wanted to better understand the network that regulates that response once a foreign agent is detected in the endosome."

TLRs have been widely studied and work in the field garnered a Nobel Prize in 2011. Many pathogens, including HIV, Group A streptococcus, and the influenza virus, elicit a response from TLR7 or TLR9 in the endosomes of cells. However, TLR7 and TLR9 can end up mistakenly triggering an immune response against the host, instead of the invader, if there are breakdowns in this first-responder network.

The search for TLR7/9 co-factors

In their study, Chanda and his team used an RNAi screen to identify 190 that cells rely upon to coordinate a response to a pathogen that has breached the endosome. Using advanced computational methods, they were able to reconstruct a molecular blueprint that revealed the intricate wiring of this critical immune defense network.

"We then drilled down and looked at one gene from the RNAi screen—called HRS—which was shown to play a fundamental role in localizing these receptors to the endosomes," said Chih-yuan Chiang, Ph.D., a postdoctoral associate in Chanda's laboratory and co-first author of the study.

Proper functioning of the immune system depends on these critical receptors getting to right place—the endosome. Send TLR7 and TLR9 to the wrong place, and the host is not only susceptible to infection, but also to autoimmune diseases. The team found that without this HRS protein, TLR9 can't do its job because it isn't delivered to the right location. HRS is part of a larger complex that recognizes and sorts other proteins into various internal vesicles (including endosomes).

"This study provides important biological insight into how one protein directs cellular sentinels to their guard posts," said Amanda Opaluch, Ph.D., also a co-first author of the study. "But overall, the study provides a 30,000-foot view of how the front line of our immune system carefully balances the need for a strong defense against pathogens and an over-reactive response that can trigger autoimmunity. The novel regulatory mechanisms that we have uncovered will be the subject of many further investigations for their impact in disease."

Chanda's group now plans to search for chemical compounds that might shut down errant signaling in the TLR7 and TLR9 system, which is implicated in several autoimmune diseases, including lupus, diabetes, inflammatory bowel disease.

Explore further: When body clock runs down, immune system takes time off

Related Stories

When body clock runs down, immune system takes time off

February 16, 2012
It's been said that timing is everything, and that may be particularly true when it comes to the ability to fight off disease. New research published by Cell Press in the February issue of the journal Immunity shows that ...

Novel DNA-sensing pathway in immune response to malaria

August 4, 2011
Until very recently, it was unclear why infection with malaria causes fever and, under severe circumstances, an infectious death. Although the parasite has an abundance of potentially toxic molecules, no one knew which ones ...

Resistant mice provide clues about successful immune response to retroviruses

June 30, 2011
Although our body's defense mechanisms are usually capable of detecting and destroying many types of pathogens, some viruses are able to evade the immune system and make us sick. In particular, "retroviruses," such as human ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.