Molecule's role in cancer suggests new combination therapy

March 1, 2012

Researchers at the University of Illinois at Chicago College of Medicine have found that a molecule found at elevated levels in cancer cells seems to protect them from the "cell-suicide" that is usually triggered by chemotherapy or radiation.

The study, published online in the journal on Feb. 29, suggests that two common cancer-fighting strategies may have "tremendous synergy" if used in combination, says Andrei Gartel, UIC associate professor of biochemistry and molecular genetics and medicine and principal investigator on the study.

Damage to a cell's DNA can set in motion a cascade of signals that triggers programmed cell death, or apoptosis. Radiation therapy and many target and somewhat selectively in rapidly dividing cells, making them useful in fighting cancer. But many cancer cells develop resistance over the course of treatment and block the suicide pathway.

Based on the observation that a in cancer cells called FOXM1 is elevated following , Gartel and his co-author sought to investigate whether FOXM1 might have a role in protecting cancer cells from apoptosis.

Using human cancer cells that were exposed to either chemicals or radiation to damage DNA, the researchers used a variety of techniques to decrease the levels of FOXM1 in these cells.

"We found a significant increase in DNA-damage-induced apoptosis in cells with diminished levels of FOXM1," Gartel said. The results were the same no matter what caused the DNA damage, or what method the researchers used to reduce FOXM1.

The researchers were able to show that FOXM1 short-circuits apoptosis by suppressing the activity of another protein, JNK, which otherwise stimulates cell death, and by turning up an anti-apoptosis protein called Bcl-2.

Besides the radiation and chemotherapy drugs long used in cancer treatment, a newer class of chemotherapy agents called proteasome inhibitors has been showing promise. All known proteasome inhibitors reduce levels of FOXM1, Gartel said.

By combining standard with proteasome inhibitors -- some of which are already FDA-approved for cancer treatment -- the drugs' effectiveness may be improved, he said.

Explore further: Researchers find coupling of proteins promotes glioblastoma development

Related Stories

Researchers find coupling of proteins promotes glioblastoma development

October 21, 2011
Two previously unassociated proteins known to be overly active in a variety of cancers bind together to ignite and sustain malignant brain tumors, a research team led by scientists at The University of Texas MD Anderson Cancer ...

Recommended for you

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.