Scientists identify crucial cell and signaling pathway in placental blood stem cell niche

March 1, 2012 By Kim Irwin, University of California - Los Angeles

(Medical Xpress) -- UCLA stem-cell researchers have identified a certain type of cell and a signaling pathway in the placental niche that play a key role in stopping blood stem cells from differentiating into mature blood cells in the placenta. Preventing this premature differentiation is critical to ensuring a proper blood supply for an individual's lifetime.

The placental niche, a stem cell "safe zone," supports blood stem and expansion without promoting differentiation into mature blood , allowing the establishment of a pool of that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.

The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.

"We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells," Mikkola said. "We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone."

The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.

"When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of in the placental vasculature," said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkola's lab.

Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.

"The idea was, if we mess up the home where the blood stem cells live, how do these cells respond to the altered environment," Chhabra said. "We found that it was important to suppress EPO where blood stem cell expansion is desired and to restrict its expression to areas where red should occur."

The finding, Chhabra said, was exciting in that one single molecular change "was enough to change the function of an important blood stem cell niche."

Mikkola said the blood stem cells expanded in the placental niche first seed the fetal liver and, ultimately, the bone marrow. The pool of blood stem cells could be compromised if the cells begin to differentiate in the placenta.

"We've been able to learn in the last few years about the niche cells in the adult bone marrow, but we didn't know much about them during fetal development," Mikkola said. "All hematopoietic niches in the embryo are unique in their own way, the stem cells are made in one location, expand in another and differentiate somewhere else. This is the first study that identifies a key niche cell and a signaling pathway in the placenta that allows it to do what it was destined to do, create a safe zone for the blood stem cells."

The three-year study was funded by the National Institutes of Health, the California Institute of Regenerative Medicine, an Eli and Edythe Broad Center of Regenerative Medicine and Innovation Award and the Jonsson Cancer Center Foundation at UCLA.

"The discovery of PDGF-B signaling in the trophoblasts as an important regulator of local EPO levels in the placenta reveals a developmental stage and niche specific mechanism for regulating EPO expression, which is critical for governing the fates of blood during their developmental journey," the study states. "This work gives new insights into the goal of recreating the different types of hematopoietic niches in vitro as well as furthers our understanding of the etiology of developmental defects originating from the ."

Explore further: 'Back talk' from blood cells to their progenitors is critical to balancing blood supply

Related Stories

'Back talk' from blood cells to their progenitors is critical to balancing blood supply

January 5, 2012
(PhysOrg.com) -- When it comes to the body's blood supply, maintaining the right balance is crucial. UCLA stem cell scientists have now discovered that in the common fruit fly, this balancing act requires a complex "conversation" ...

Study unlocks origins of blood stem cells

December 9, 2011
A research team led by Nancy Speck, PhD, professor of Cell and Developmental Biology at the Perelman School of Medicine at the University of Pennsylvania, has discovered a molecular marker for the immediate precursors of ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.