Research wrests partial control of a memory

March 22, 2012

Scripps Research Institute scientists and their colleagues have successfully harnessed neurons in mouse brains, allowing them to at least partially control a specific memory. Though just an initial step, the researchers hope such work will eventually lead to better understanding of how memories form in the brain, and possibly even to ways to weaken harmful thoughts for those with conditions such as schizophrenia and post traumatic stress disorder.

The results are reported in the March 23, 2012 issue of the journal Science.

Researchers have known for decades that stimulating various regions of the brain can trigger behaviors and even memories. But understanding the way these brain functions develop and occur normally—effectively how we become who we are—has been a much more complex goal.

"The question we're ultimately interested in is: How does the activity of the brain represent the world?" said Scripps Research neuroscientist Mark Mayford, who led the new study. "Understanding all this will help us understand what goes wrong in situations where you have inappropriate perceptions. It can also tell us where the brain changes with learning."

On-Off Switches and a Hybrid Memory

As a first step toward that end, the team set out to manipulate specific memories by inserting two genes into mice. One gene produces receptors that researchers can chemically trigger to activate a neuron. They tied this gene to a natural gene that turns on only in active , such as those involved in a particular as it forms, or as the memory is recalled. In other words, this technique allows the researchers to install on-off switches on only the neurons involved in the formation of specific memories.

For the study's main experiment, the team triggered the "on" switch in neurons active as mice were learning about a new environment, Box A, with distinct colors, smells and textures.

Next the team placed the mice in a second distinct environment—Box B—after giving them the chemical that would turn on the neurons associated with the memory for Box A. The researchers found the mice behaved as if they were forming a sort of hybrid memory that was part Box A and part Box B. The chemical switch needed to be turned on while the mice were in Box B for them to demonstrate signs of recognition. Alone neither being in Box B nor the chemical switch was effective in producing memory recall.

"We know from studies in both animals and humans that memories are not formed in isolation but are built up over years incorporating previously learned information," Mayford said. "This study suggests that one way the brain performs this feat is to use the activity pattern of nerve cells from old memories and merge this with the activity produced during a new learning session."

Future Manipulation of the Past

The team is now making progress toward more precise control that will allow the scientists to turn one memory on and off at will so effectively that a mouse will in fact perceive itself to be in Box A when it's in Box B.

Once the processes are better understood, Mayford has ideas about how researchers might eventually target the perception process through drug treatment to deal with certain mental diseases such as and . With such problems, patients' brains are producing false perceptions or disabling fears. But drug treatments might target the neurons involved when a patient thinks about such fear, to turn off the neurons involved and interfere with the disruptive thought patterns.

Explore further: Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

More information: www.sciencemag.org/content/335/6075/1513.abstract

Related Stories

Team isolates nerve cells involved in storing long term memory and gene proteins associated with them

February 10, 2012
(Medical Xpress) -- A research team in Taiwan has succeeded in isolating two nerve cells in fruit fly brains that are believed to be the major players in allowing for the formation of long term memories. Furthermore, they’ve ...

Neuroscientists identify a master controller of memory

December 22, 2011
When you experience a new event, your brain encodes a memory of it by altering the connections between neurons. This requires turning on many genes in those neurons. Now, MIT neuroscientists have identified what may be a ...

Memory formation triggered by stem cell development

February 23, 2012
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

Recommended for you

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

New study describes how dopamine tells you it isn't worth the wait

October 16, 2017
How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done ...

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Restless legs syndrome study identifies 13 new genetic risk variants

October 13, 2017
A new study into the genetics underlying restless legs syndrome has identified 13 previously-unknown genetic risk variants, while helping inform potential new treatment options for the condition.

Blueberries may improve attention in children following double-blind trial

October 13, 2017
Primary school children could show better attention by consuming flavonoid-rich blueberries, following a study conducted by the University of Reading.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

pauljpease
not rated yet Mar 22, 2012
Sounds like the memory technology in the movie "paycheck".
Argiod
not rated yet Mar 22, 2012
Here we go; the first stages of total mind control. Once any government can control our memories, we will not even remember who or what we are, and will become total puppets of said government. And with nanotechnology, it may be possible to alter everyone's memories with something as simple as arial spraying over our cities.

Of course, this is just my opinion; I could be wrong.
Telekinetic
not rated yet Mar 22, 2012
Argiod-

Television, computers, smart phones, and video games have already accomplished the "not remembering who and what we are", which WAS at one time a creature connected to and validated by nature. The electronic screen, with which I communicate with strangers- for what reason I'm not sure, is the new mirror that reflects a soul that has buried a life once lived under a star-filled sky.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.