Researchers use brain-injury data to map intelligence in the brain

April 10, 2012
A new study found that specific structures, primarily on the left side of the brain, are vital to general intelligence and executive function (the ability to regulate and control behavior). Brain regions that are associated with general intelligence and executive function are shown in color, with red indicating common areas, orange indicating regions specific to general intelligence, and yellow indicating areas specific to executive function. Credit: Aron Barbey

Scientists report that they have mapped the physical architecture of intelligence in the brain. Theirs is one of the largest and most comprehensive analyses so far of the brain structures vital to general intelligence and to specific aspects of intellectual functioning, such as verbal comprehension and working memory.

Their study, published in Brain: A , is unique in that it enlisted an extraordinary pool of volunteer participants: 182 with highly localized brain damage from penetrating .

"It's a significant challenge to find patients (for research) who have brain damage, and even further, it's very hard to find patients who have focal brain damage," said University of Illinois neuroscience professor Aron Barbey, who led the study. Brain damage – from stroke, for example – often impairs multiple brain areas, he said, complicating the task of identifying the cognitive contributions of specific brain structures.

Aron Barbey discusses his work linking specific brain injuries, seen here in a brain scan, to impairment on particular cognitive functions. To view video, return to story and click on link in this cutline. Photo courtesy Aron Barbey

But the very focal brain injuries analyzed in the study allowed the researchers "to draw inferences about how specific brain structures are necessary for performance," Barbey said. "By studying how damage to particular brain regions produces specific forms of cognitive impairment, we can map the architecture of the mind, identifying brain structures that are critically important for specific intellectual abilities."

The researchers took CT scans of the participants' brains and administered an extensive battery of cognitive tests. They pooled the CT data to produce a collective map of the cortex, which they divided into more than 3,000 three-dimensional units called voxels. By analyzing multiple patients with damage to a particular voxel or cluster of voxels and comparing their cognitive abilities with those of patients in whom the same structures were intact, the researchers were able to identify brain regions essential to specific cognitive functions, and those structures that contribute significantly to intelligence.

"We found that general intelligence depends on a remarkably circumscribed neural system," Barbey said. "Several brain regions, and the connections between them, were most important for general intelligence."

These structures are located primarily within the left prefrontal cortex (behind the forehead), left temporal cortex (behind the ear) and left parietal cortex (at the top rear of the head) and in "white matter association tracts" that connect them. (Watch a video about the findings.)

The researchers also found that for planning, self-control and other aspects of executive function overlap to a significant extent with regions vital to general intelligence.

The study provides new evidence that intelligence relies not on one brain region or even the brain as a whole, Barbey said, but involves specific brain areas working together in a coordinated fashion.

"In fact, the particular regions and connections we found support an emerging body of evidence indicating that intelligence depends on the brain's ability to integrate information from verbal, visual, spatial and executive processes," he said.

The findings will "open the door to further investigations into the biological basis of , exploring how the , genes, nutrition and the environment together interact to shape the development and continued evolution of the remarkable intellectual abilities that make us human," Barbey said.

Explore further: Does a bigger brain make for a smarter child in babies born prematurely?

Related Stories

Does a bigger brain make for a smarter child in babies born prematurely?

October 12, 2011
New research suggests the growth rate of the brain's cerebral cortex in babies born prematurely may predict how well they are able to think, speak, plan and pay attention later in childhood. The research is published in the ...

Neurologists identify potential biomarker of cognitive decline for earlier diagnosis of disease

October 31, 2011
Researchers from the Department of Neurology at NYU Langone Medical Center identified for the first time that changes in the tissue located at the junction between the outer and inner layers of the brain, called "blurring", ...

Recommended for you

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.