Researchers use brain-injury data to map intelligence in the brain

April 10, 2012
A new study found that specific structures, primarily on the left side of the brain, are vital to general intelligence and executive function (the ability to regulate and control behavior). Brain regions that are associated with general intelligence and executive function are shown in color, with red indicating common areas, orange indicating regions specific to general intelligence, and yellow indicating areas specific to executive function. Credit: Aron Barbey

Scientists report that they have mapped the physical architecture of intelligence in the brain. Theirs is one of the largest and most comprehensive analyses so far of the brain structures vital to general intelligence and to specific aspects of intellectual functioning, such as verbal comprehension and working memory.

Their study, published in Brain: A , is unique in that it enlisted an extraordinary pool of volunteer participants: 182 with highly localized brain damage from penetrating .

"It's a significant challenge to find patients (for research) who have brain damage, and even further, it's very hard to find patients who have focal brain damage," said University of Illinois neuroscience professor Aron Barbey, who led the study. Brain damage – from stroke, for example – often impairs multiple brain areas, he said, complicating the task of identifying the cognitive contributions of specific brain structures.

Aron Barbey discusses his work linking specific brain injuries, seen here in a brain scan, to impairment on particular cognitive functions. To view video, return to story and click on link in this cutline. Photo courtesy Aron Barbey

But the very focal brain injuries analyzed in the study allowed the researchers "to draw inferences about how specific brain structures are necessary for performance," Barbey said. "By studying how damage to particular brain regions produces specific forms of cognitive impairment, we can map the architecture of the mind, identifying brain structures that are critically important for specific intellectual abilities."

The researchers took CT scans of the participants' brains and administered an extensive battery of cognitive tests. They pooled the CT data to produce a collective map of the cortex, which they divided into more than 3,000 three-dimensional units called voxels. By analyzing multiple patients with damage to a particular voxel or cluster of voxels and comparing their cognitive abilities with those of patients in whom the same structures were intact, the researchers were able to identify brain regions essential to specific cognitive functions, and those structures that contribute significantly to intelligence.

"We found that general intelligence depends on a remarkably circumscribed neural system," Barbey said. "Several brain regions, and the connections between them, were most important for general intelligence."

These structures are located primarily within the left prefrontal cortex (behind the forehead), left temporal cortex (behind the ear) and left parietal cortex (at the top rear of the head) and in "white matter association tracts" that connect them. (Watch a video about the findings.)

The researchers also found that for planning, self-control and other aspects of executive function overlap to a significant extent with regions vital to general intelligence.

The study provides new evidence that intelligence relies not on one brain region or even the brain as a whole, Barbey said, but involves specific brain areas working together in a coordinated fashion.

"In fact, the particular regions and connections we found support an emerging body of evidence indicating that intelligence depends on the brain's ability to integrate information from verbal, visual, spatial and executive processes," he said.

The findings will "open the door to further investigations into the biological basis of , exploring how the , genes, nutrition and the environment together interact to shape the development and continued evolution of the remarkable intellectual abilities that make us human," Barbey said.

Explore further: Does a bigger brain make for a smarter child in babies born prematurely?

Related Stories

Does a bigger brain make for a smarter child in babies born prematurely?

October 12, 2011
New research suggests the growth rate of the brain's cerebral cortex in babies born prematurely may predict how well they are able to think, speak, plan and pay attention later in childhood. The research is published in the ...

Neurologists identify potential biomarker of cognitive decline for earlier diagnosis of disease

October 31, 2011
Researchers from the Department of Neurology at NYU Langone Medical Center identified for the first time that changes in the tissue located at the junction between the outer and inner layers of the brain, called "blurring", ...

Recommended for you

What if consciousness is not what drives the human mind?

November 22, 2017
Everyone knows what it feels like to have consciousness: it's that self-evident sense of personal awareness, which gives us a feeling of ownership and control over the thoughts, emotions and experiences that we have every ...

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.