Study marks breakthrough in IOP regulation in fight against glaucoma

April 5, 2012

A six-year collaboration between two faculty members of Bascom Palmer Eye Institute of the University of Miami Miller School of Medicine has yielded new insight regarding the regulation of intraocular pressure (IOP) in glaucoma - an irreversible blinding disease that causes progressive visual impairment due to optic nerve damage and is the leading cause of blindness worldwide.

The key finding by associate professors of ophthalmology Richard K. Lee, M.D., Ph.D. and Sanjoy Bhattacharya, M. Tech., Ph, D. validates their hypothesis that the response of aqueous humor (fluid produced in the ) to at the cellular level (mechanosensing) impacts the regulation of IOP through cells converting that stimuli into chemical activity (mechanotransduction). At the center of this breakthrough lies the protein cochlin, which was discovered in the trabecular meshwork (TM) seven years ago using highly sensitive . The TM refers to tissue located around the base of the cornea that is responsible for filtering and draining aqueous humor from the eye and controlling the IOP. Mass spectrometry is a technique used to identify proteins and to determine their with great precision and can also ascertain if a protein has been modified. Bascom Palmer Eye Institute is one of only a few eye centers in the nation to have its own . In fact, two such cutting edge machines are now part of Bascom Palmer Eye Institute's Adrienne Arsht Hope for Vision Retinal Degeneration Research Laboratory, which was established with a $1 million gift from philanthropist Adrienne Arsht, given in 2008.

"With elevated IOP being the primary modifiable risk factor affecting the development and progression of ," said Lee, "This advancement opens up potential avenues for effective and innovative manipulation of the pathway of aqueous outflow using mechanosensors and mechanotransducers. In turn, it could lead to meaningful intervention strategies." Currently, the primary treatment for glaucoma is to lower IOP through the topical use of medications or eye surgery.

Additionally, Bhattacharya and Lee found that mechanosensing of fluid flow is transduced, or converted into chemical signals, by TREK-1 mechanotransducers on the cell surface. TREK -1 is a protein in the TM, but how it affects IOP was previously unknown. Also missing was an understanding of how cochlin works in mechanosensing. Lee and Bhattacharya's extensive research demonstrated that TREK 1 functions in conjunction with cochlin to regulate IOP.

Furthermore, Lee and Bhattacharya determined that aberrant levels of secreted cochlin disrupt aqueous outflow, thus allowing for a rise in IOP. "Fluctuations of IOP can alter cells of the trabecular meshwork," explained Bhattacharya. "This results in dysfunction of aqueous flow. Presently, there are over 2 million known proteins and 46,000 lipids that can be tested to determine their impact upon IOP."

Bhattacharya and Lee are already working on next steps using advanced mass spectrometry techniques. They hope to uncover endogenous and exogenous molecules that regulate aqueous humor outflow by modulating mechanosensors and mechanotransducers, "The success of this research is based on a strong, ongoing collaboration between Dr. Lee and myself, as well as hard work by postdoctoral fellows and graduate students," summarized Bhattacharya. "We are also fortunate that Bascom Palmer Eye Institute is one of the few vision research centers in the country to have two mass spectrometers. " Both Bhattacharya and Lee agree that without a mass spectrometer, and faculty members who have the expertise to use it to its full potential, this discovery would not have been possible. Funding for their research was received through the National Institutes of Health via two grants totaling $3.4 million.

Mass spectrometers are currently being used by other researchers at Bascom Palmer to identify mechanistic aspects of retinal degeneration and for unraveling mechanistic details of glaucoma pathology. "We continually learn from one another how mass spectrometry can lead to more exciting discoveries," said Bhattacharya. "It is a very valuable tool in the work to combat eye diseases."

On April 4, 2012, PLoS ONE, an open-access peer-reviewed scientific journal, produced by the Public Library of Science, published an article by Drs. Bhattacharya and Lee about this recent breakthrough. Click here to read the article.

Explore further: New research characterizes glaucoma as neurologic disorder rather than eye disease

Related Stories

New research characterizes glaucoma as neurologic disorder rather than eye disease

March 7, 2012
A new paradigm to explain glaucoma is rapidly emerging, and it is generating brain-based treatment advances that may ultimately vanquish the disease known as the "sneak thief of sight." A review now available in Ophthalmology, ...

Research identifies risk factors associated with progression of glaucoma

May 9, 2011
Elevated pressure inside the eye, cornea thinning, and visual field loss are all markers that glaucoma may progress, according to a report in the May issue of Archives of Ophthalmology.

British study may improve glaucoma assessment and treatment

October 24, 2011
Results from a recent scientific study in the U.K. may change the way that healthcare professionals measure eye pressure and allow them to assess the risk of glaucoma with greater accuracy. Glaucoma is the second most common ...

Recommended for you

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

Nearly 60% of pinkeye patients receive antibiotic eye drops, but they're seldom necessary

June 28, 2017
A new study suggests that most people with acute conjunctivitis, or pinkeye, are getting the wrong treatment.

Magnetic implants used to treat 'dancing eyes'

June 26, 2017
A research team has successfully used magnets implanted behind a person's eyes to treat nystagmus, a condition characterised by involuntary eye movements.

Drug shows promise against vision-robbing disease in seniors

June 21, 2017
An experimental drug is showing promise against an untreatable eye disease that blinds older adults—and intriguingly, it seems to work in patients who carry a particular gene flaw that fuels the damage to their vision.

Reproducing a retinal disease on a chip

June 15, 2017
Approximately 80% of all sensory input is received via the eyes, so suffering from chronic retinal diseases that lead to blindness causes a significant decrease in the quality of life (QOL). And because retinal diseases are ...

New gene therapy for vision loss proven safe in humans

May 16, 2017
In a small and preliminary clinical trial, Johns Hopkins researchers and their collaborators have shown that an experimental gene therapy that uses viruses to introduce a therapeutic gene into the eye is safe and that it ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.