New compound targets key mechanism behind lymphoma

April 3, 2012

Scientists at Fox Chase Cancer Center in Philadelphia have come one step closer to developing the first treatment to target a key pathway in lymphoma. The new findings will be announced at the AACR Annual Meeting 2012 on Tuesday, April 3.

"It's an exciting time to be involved in and research," says study author Mitchell Smith, M.D., Ph.D., director of Lymphoma Service at Fox Chase. "There's a new understanding of the disease, and to treat it. I am optimistic that over the next couple of years treatments will continue to get even better and less toxic."

During the study, Smith and his colleagues investigated a compound known as TL32711 (Birinapant), developed by TetraLogic Pharmaceuticals in Malvern, Pennsylvania. The compound works by blocking the process cells used to avoid death, he explains—in other words, it inhibits the process that inhibits cell death. "TL32711 is like a double-negative. It inhibits the inhibitor, and therefore makes cells more sensitive to dying."

To test whether TL32711 works better in some types of lymphomas than others, Smith and his team added it to various lymphoma cells. Since compounds tend to work best when given in combination with other drugs, in some cells they added another compound known as TRAIL, which targets tumor cells.

The researchers found that some types of lymphoma appeared more vulnerable to the effects of TL32711, suggesting these patients should be the first to try the finished product in clinical trials. Specifically, they saw that follicular lymphoma cells and some types of diffuse large B cell lymphomas were more likely to die following treatment. Not surprisingly, adding TRAIL to the mix appeared to make TL32711 even more effective at killing . "We saw the combination worked better than either one alone," says Smith.

Importantly, the researchers saw the cells didn't just die—they died because of the action of the compounds, explains Smith. TL32711 works by enhancing cell death—known formally as apoptosis—and just before cells experience apoptosis, they activate proteins known as caspases. Sure enough, after exposure to the compounds, the level of active caspases increased, confirming the cells were undergoing more apoptosis. "This result confirms that the cells are dying the way they should when you add these compounds," says Smith.

TL32711 is not yet available in the clinic, says Smith, but already some clinical trials are enrolling patients to test its effects. He and his colleagues plan to continue to test the compound in animals, to get a better sense of how it should best be used in humans.

"We're getting a much better understanding of why don't die," he adds. "We're starting to see drugs that hit different pathways in the cell. Our research is about trying to take the compounds that target this particular forward in the most efficient way possible."

Explore further: Researchers discover possible drug targets for common non-Hodgkin's lymphoma

Related Stories

Researchers discover possible drug targets for common non-Hodgkin's lymphoma

July 19, 2011
Researchers at the University of Maryland School of Medicine have discovered a novel interaction between two proteins involved in regulating cell growth that could provide possible new drug targets for treating diffuse large ...

Novel treatment for skin lymphoma

January 17, 2012
Promising findings on a novel combination treatment approach for a chronic type of skin lymphoma are being published today (embargoed for 4 pm) in JAMA's Archives of Dermatology by clinical researchers from Seidman Cancer ...

Recommended for you

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.