A humble fish helps us understand our own brains

April 19, 2012 By Angela Herring
Biology professor and chair Günther Zupanc (right) published results in the journal Neuroscience today demonstrating the mechanism by which new neurons find home. Credit: Dominick Reuter

(Medical Xpress) -- Recent findings from the Laboratory of Neurobiology at Northeastern, led by biology professor and chair Günther Zupanc, and published online in the scientific journal Neuroscience, demonstrate the mechanism by which new neurons find their ultimate home — research that Zupanc hopes will offer insight into the regenerative potential of the human brain.

In 1989, scientists discovered that two areas of the — the hippocampus and the olfactory bulb — are capable of generating neurons during adulthood. In the last decade, adult stem-cell research has shown that latent stem cells also exist in other regions.

In principle, this information could be used to help the brain cure itself by replacing neurons lost to injury with new, adult-born neurons. However, despite the work of thousands of research programs, such attempts have failed thus far.

“Key to the development of such replacement therapies is to better understand what limits the regenerative potential of the human brain,” said Zupanc.

His team, which includes Northeastern research associates Ruxandra Sîrbulescu and Iulian Ilies, believes that exploring the regenerative capacities of other species can lend insight into the neurological system of mammals. “If there are certain molecules that are missing in the system, then you can search as much as you want, you will never find them,” said Zupanc.

Bony have the ability to grow new brain tissue or part of the spinal cord after a predatory attack. This evolutionary strategy makes them prime candidates for studying neuronal regeneration, he said.

If scientists could induce the mammalian system to mimic the cellular behavior of the fish system, it could allow people to heal from traumatic brain and spinal-cord injuries in a matter of weeks, Zupanc said. But neuronal regeneration, which has been demonstrated in stroke patients, does not itself lead to recovery.

New neurons must migrate to a different area of the brain to become functional, Zupanc explained. His recent investigations with teleost fish explore the process of neuronal migration, which only occurs with proper guidance, he said. Until now, researchers have not known how new neurons in the adult fish brain find their way to their target areas, where they integrate into the network of existing neurons and become functional.

The team found that a different cell type — the radial glia — guides new neurons along a scaffold from their birthplace to their ultimate home. The same phenomenon has been observed in human embryonic development. But while teleost fish retain this ability into adulthood, humans do not.

Without a full understanding of how develop functionality, these findings will remain in the lab as interesting research results. Zupanc hopes his investigations with fish will add important insights required to help human patients with neurological injuries and diseases.

Explore further: Major discovery explains how adult brain cleans out dead brain cells, produces new ones

Related Stories

Major discovery explains how adult brain cleans out dead brain cells, produces new ones

August 10, 2011
(Medical Xpress) -- Adult brains generate thousands of new brain cells called neurons each day; however only a small fraction of them survive. The rest die and are consumed by scavenger cells called phagocytes. Until now, ...

Genetic 'conductor' involved with new brain cell production in adults

June 29, 2011
A team of North Carolina State University researchers has discovered more about how a gene connected to the production of new brain cells in adults does its job. Their findings could pave the way to new therapies for brain ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.