Engineered stem cells seek out, kill HIV in living organisms

April 12, 2012 By Enrique Rivero, University of California - Los Angeles

Human immunodefieciency virus (HIV). Credit: C. Goldsmith/public domain
(Medical Xpress) -- Expanding on previous research providing proof-of-principal that human stem cells can be genetically engineered into HIV-fighting cells, a team of UCLA researchers have now demonstrated that these cells can actually attack HIV-infected cells in a living organism.

The study, published April 12 in the journal , demonstrates for the first time that engineering to form immune cells that target HIV is effective in suppressing the virus in living tissues in an , said lead investigator Scott G. Kitchen, an assistant professor of medicine in the division of and at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute.

"We believe that this study lays the groundwork for the potential use of this type of an approach in combating in infected individuals, in hopes of eradicating the virus from the body," he said.

In the previous research, the scientists took CD8 cytotoxic — the "killer" T cells that help fight infection — from an HIV-infected individual and identified the molecule known as the T cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. However, these T cells, while able to destroy HIV-infected cells, do not exist in great enough quantities to clear the virus from the body. So the researchers cloned the receptor and used this to genetically engineer human blood stem cells. They then placed the engineered stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a .

The engineered stem cells developed into a large population of mature, multi-functional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also discovered that HIV-specific T cell receptors have to be matched to an individual in much the same way an organ is matched to a transplant patient.

In this current study, the researchers similarly engineered human blood stem cells and found that they can form mature T cells that can attack HIV in tissues where the virus resides and replicates. They did so by using a surrogate model, the humanized mouse, in which HIV infection closely resembles the disease and its progression in humans.

In a series of tests on the mice's peripheral blood, plasma and organs conducted two weeks and six weeks after introducing the engineered cells, the researchers found that the number of CD4 "helper" T cells — which become depleted as a result of HIV infection — increased, while levels of HIV in the blood decreased. CD4 cells are white blood cells that are an important component of the immune system, helping to fight off infections. These results indicated that the engineered were capable of developing and migrating to the organs to fight infection there.

The researchers did note a potential weakness with the study: Human reconstituted at a lower level in the humanized mice than they would in humans, and as a result, the mice's immune systems were mostly, though not completely, reconstructed. Because of this, HIV may be slower to mutate in the mice than in human hosts. So the use of multiple, engineered T cell receptors may be one way to adjust for the higher potential for HIV mutation in humans.

"We believe that this is the first step in developing a more aggressive approach in correcting the defects in the human T cell responses that allow HIV to persist in infected people," Kitchen said.

The researchers will now begin making T cell receptors that target different parts of and that could be used in more genetically matched individuals, he said.

Explore further: Researchers demonstrate that stem cells can be engineered to kill HIV

More information: Research paper online: dx.plos.org/10.1371/journal.plpa.1002649

Related Stories

Researchers demonstrate that stem cells can be engineered to kill HIV

December 8, 2009
(PhysOrg.com) -- UCLA AIDS Institute researchers have for the first time demonstrated that human blood stem cells can be engineered to target and kill HIV-infected cells.

Gene-based stem cell therapy specifically removes cell receptor that attracts HIV

February 25, 2010
UCLA AIDS Institute researchers successfully removed CCR5 — a cell receptor to which HIV-1 binds for infection but which the human body does not need — from human cells. Individuals who naturally lack the CCR5 receptor ...

Exhausted B cells fail to fight HIV

July 14, 2008
HIV tires out the cells that produce virus-fighting proteins known as antibodies, according to a human study that will be published online July 14 in the Journal of Experimental Medicine.

Exhausted B cells hamper immune response to HIV

July 14, 2008
Recent studies have shown that HIV causes a vigorous and prolonged immune response that eventually leads to the exhaustion of key immune system cells--CD4+ and CD8+ T-cells--that target HIV. These tired cells become less ...

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Immune exhaustion in HIV infection

May 6, 2008
As HIV disease progresses in a person infected with the HIV virus, a group of cells in the immune system, the CD8+ T lymphocytes, become “exhausted,” losing many of their abilities to kill other cells infected by the ...

Recommended for you

Cellphone technology developed to detect HIV

November 9, 2018
The management of human immunodeficiency virus 1 (HIV), an autoimmune disorder that cripples the immune system by attacking healthy cells, remains a major global health challenge in developing countries that lack infrastructure ...

Long-term study shows that HIV-2 is deadlier than previously thought

November 8, 2018
A study published in The Lancet HIV shows that HIV-2 is more pathogenic than previously demonstrated. The new findings indicate that early treatment should be applied to all patients with HIV, not only to those with HIV-1.

Incarceration is likely to increase HIV and HCV transmission among people who inject drugs, new study finds

October 30, 2018
Injecting drug use, through the sharing of needles, syringes and other injecting equipment, is a primary route of transmission for both HIV and hepatitis C virus (HCV), blood-borne infections that cause considerable morbidity ...

Long-acting injectable implant shows promise for HIV treatment and prevention

October 9, 2018
A persistent challenge in HIV/AIDS treatment and prevention is medication adherence – getting patients to take their medication as required to get the best results.

Scientists develop rapid test for diagnosing tuberculosis in people with HIV

October 8, 2018
An international team that includes Rutgers scientists has made significant progress in developing a urine diagnostic test that can quickly, easily and inexpensively identify tuberculosis infection in people also infected ...

Researchers uncover new role of TIP60 protein in controlling tumour formation

October 8, 2018
Scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) have discovered a new molecular pathway that controls colorectal cancer development, and their exciting ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.