Engineered stem cells seek out, kill HIV in living organisms

April 12, 2012 By Enrique Rivero, University of California - Los Angeles
Human immunodefieciency virus (HIV). Credit: C. Goldsmith/public domain

(Medical Xpress) -- Expanding on previous research providing proof-of-principal that human stem cells can be genetically engineered into HIV-fighting cells, a team of UCLA researchers have now demonstrated that these cells can actually attack HIV-infected cells in a living organism.

The study, published April 12 in the journal , demonstrates for the first time that engineering to form immune cells that target HIV is effective in suppressing the virus in living tissues in an , said lead investigator Scott G. Kitchen, an assistant professor of medicine in the division of and at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute.

"We believe that this study lays the groundwork for the potential use of this type of an approach in combating in infected individuals, in hopes of eradicating the virus from the body," he said.

In the previous research, the scientists took CD8 cytotoxic — the "killer" T cells that help fight infection — from an HIV-infected individual and identified the molecule known as the T cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. However, these T cells, while able to destroy HIV-infected cells, do not exist in great enough quantities to clear the virus from the body. So the researchers cloned the receptor and used this to genetically engineer human blood stem cells. They then placed the engineered stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a .

The engineered stem cells developed into a large population of mature, multi-functional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also discovered that HIV-specific T cell receptors have to be matched to an individual in much the same way an organ is matched to a transplant patient.

In this current study, the researchers similarly engineered human blood stem cells and found that they can form mature T cells that can attack HIV in tissues where the virus resides and replicates. They did so by using a surrogate model, the humanized mouse, in which HIV infection closely resembles the disease and its progression in humans.

In a series of tests on the mice's peripheral blood, plasma and organs conducted two weeks and six weeks after introducing the engineered cells, the researchers found that the number of CD4 "helper" T cells — which become depleted as a result of HIV infection — increased, while levels of HIV in the blood decreased. CD4 cells are white blood cells that are an important component of the immune system, helping to fight off infections. These results indicated that the engineered were capable of developing and migrating to the organs to fight infection there.

The researchers did note a potential weakness with the study: Human reconstituted at a lower level in the humanized mice than they would in humans, and as a result, the mice's immune systems were mostly, though not completely, reconstructed. Because of this, HIV may be slower to mutate in the mice than in human hosts. So the use of multiple, engineered T cell receptors may be one way to adjust for the higher potential for HIV mutation in humans.

"We believe that this is the first step in developing a more aggressive approach in correcting the defects in the human T cell responses that allow HIV to persist in infected people," Kitchen said.

The researchers will now begin making T cell receptors that target different parts of and that could be used in more genetically matched individuals, he said.

Explore further: New memory for HIV patients

More information: Research paper online: dx.plos.org/10.1371/journal.plpa.1002649

Related Stories

New memory for HIV patients

March 26, 2012
The hallmark loss of helper CD4+ T cells during human immunodeficiency virus (HIV) infection may be a red herring for therapeutics, according to a study published on March 26th in the Journal of Experimental Medicine.

Recommended for you

Unlocking the secrets of HIV's persistence

May 22, 2018
Thanks to advances in the development of anti-retroviral therapy (ART), patients with HIV are living longer than ever before. And yet, even in patients on very effective, long-term ART, HIV persists, requiring patients to ...

Discovery of how HIV hedges its bets opens the door to new therapies

May 10, 2018
A stem cell is one with infinite possibilities. So, for decades, scientists have puzzled over how the cell chooses to keep being a stem cell and continue dividing, or specialize into a specific cell type, like a heart or ...

Researchers find link between crystal methamphetamine and immune changes in HIV

May 4, 2018
A researcher at the University of Miami Miller School of Medicine has found that the use of stimulants, such as methamphetamine, can negatively affect the health of HIV-positive persons even when they are adhering to medical ...

Study challenges 'shock and kill' approach to eliminating HIV

May 1, 2018
Researchers have provided new insight into the cellular processes behind the 'shock and kill' approach to curing HIV, which they say challenges the effectiveness of the treatment.

State-of-the-art HIV drug could curb HIV transmission, improve survival in India

April 30, 2018
An HIV treatment regimen already widely used in North America and Europe would likely increase the life expectancy of people living with HIV in India by nearly three years and reduce the number of new HIV infections by 23 ...

Risks to babies of mothers with HIV from three antiretroviral regimens appear to be low

April 25, 2018
The risk for preterm birth and early infant death is similar for three antiretroviral drug regimens taken by pregnant women with HIV according to a new study from Harvard T.H. Chan School of Public Health.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.