Seeing Beyond the Visual Cortex

April 3, 2012 By Miles O' Brien and Jon Baime, National Science Foundation

(Medical Xpress) -- It's a chilling thought--losing the sense of sight because of severe injury or damage to the brain's visual cortex. But, is it possible to train a damaged or injured brain to "see" again after such a catastrophic injury? Yes, according to Tony Ro, a neuroscientist at the City College of New York, who is artificially recreating a condition called blindsight in his lab.

"Blindsight is a condition that some patients experience after having damage to the in the back of their brains. What happens in these patients is they go cortically blind, yet they can still discriminate visual information, albeit without any awareness." explains Ro.

While no one is ever going to say blindsight is 20/20, Ro says it holds tantalizing clues to the architecture of the brain. "There are a lot of areas in the brain that are involved with processing , but without any ." he points out. "These other parts of the brain receive input from the eyes, but they're not allowing us to access it consciously."

With support from the National Science Foundation's (NSF) Directorate for Social, Behavioral and Economic Sciences, Ro is developing a clearer picture of how other , besides the visual cortex, respond to .

In order to recreate blindsight, Ro must find a volunteer who is willing to temporarily be blinded by having a powerful magnetic pulse shot right into their visual cortex. The magnetic blast disables the visual cortex and blinds the person for a split second. "That blindness occurs very shortly and very rapidly--on the order of one twentieth of a second or so," says Ro.

On the day of Science Nation's visit to Ro's lab in the Hamilton Heights section of Manhattan, volunteer Lei Ai is seated in a small booth in front of a computer with instructions to keep his eyes on the screen. A round device is placed on the back of Ai's head. Then, the booth is filled with the sound of consistent clicks, about two seconds apart. Each click is a magnetic pulse disrupting the activity in his , blinding him. Just as the pulse blinds him, a shape, such as a diamond or a square, flashes onto a computer screen in front of him.

Ro says that 60 to nearly 100 percent of the time, test subjects report back the shape correctly. "They'll be significantly above chance levels at discriminating those shapes, even though they're unaware of them. Sometimes they're nearly perfect at it," he adds.

Ro observes what happens to other areas of Ai's brain during the instant he is blinded and a shape is flashed on the screen. While the wears off immediately with no lasting effects, according to Ro, the findings are telling. "There are likely to be a lot of alternative visual pathways that go into the brain from our eyes that process information at unconscious levels," he says.

Ro believes understanding and mapping those alternative pathways might be the key to new rehabilitative therapies. "We have a lot of soldiers returning home who have a lot of brain damage to visual areas of the . We might be able to rehabilitate these patients," he says. And that's something worth looking into.

Related Stories

Recommended for you

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.