Wiring the brain

April 13, 2012
Brain. Image provided by Petra Vertes

(Medical Xpress) -- Researchers at the University of Cambridge have developed a simple mathematical model of the brain which provides a remarkably complete statistical account of the complex web of connections between various brain regions.  Their findings have been published this week in the journal Proceedings of the National Academy of Sciences (PNAS).

The shares a similar pattern of connections with other complex networks such as social networks and the world wide web.  However, until now, it was not known what rules were involved in the formation of the human brain network.

The scientists, from the Behavioral and Clinical Neuroscience Institute in the Department of Psychiatry, and the National Institute of Mental Health in the US, discovered that the network can be modeled as a result of just two different competing factors:  a distance penalty based on the cost of maintaining long-range connections between various brain regions and a second term modeling the preference for links between regions sharing similar input.

Professor Ed Bullmore, lead author on the paper, explains the dynamic between the parameters they identified: “There is a huge amount of evidence that the wiring of brain networks tends to minimize connection costs. Less costly, short-distance connections are much more numerous than more costly, long-distance connections. So our realistically includes a distance penalty on long-distance connections, which will tend to keep connection costs low.

“However, we found that cost control alone was not enough to reproduce a wide range of network properties. To do that, we had to model an economical trade-off between cost control and another term which favoured new, direct connections between regions that shared similar input or were otherwise already indirectly linked.”

The model not only increases our understanding of healthy brains, but the researchers believe it could also provide unique insight into disorders such as schizophrenia.

Dr. Petra Vertes, one of the authors of the paper, said: “Our model hints at possible mechanisms behind schizophrenia, which will be interesting to investigate further.  We have been able to model the disease by tuning the parameters to allow a greater probability of connection between distant .  This result echoes some prior neuroimaging results which suggest that brain networks in schizophrenia may be associated with an abnormal trade-off between connection costs and other topological properties of .”

Explore further: Neuro-tweets: #hashtagging the brain (w/ video)

Related Stories

Neuro-tweets: #hashtagging the brain (w/ video)

May 9, 2011
(Medical Xpress) -- We like to think the human brain is special, something different from other brains and information processing systems, but a Cambridge professor set out to test that assumption – by conducting a live ...

New target for Alzheimer's drugs

February 9, 2012
(Medical Xpress) -- Biomedical scientists at the University of California, Riverside have identified a new link between a protein called beta-arrestin and short-term memory that could open new doors for the therapeutic treatment ...

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.