Amino acid consumption associated with how fast cancer cells divide

May 24, 2012

For almost a century, researchers have known that cancer cells have peculiar appetites, devouring glucose in ways that normal cells do not. But glucose uptake may tell only part of cancer's metabolic story. Researchers from the Broad Institute and Massachusetts General Hospital looked across 60 well-studied cancer cell lines, analyzing which of more than 200 metabolites were consumed or released by the fastest dividing cells. Their research yields the first large-scale atlas of cancer metabolism and points to a key role for the smallest amino acid, glycine, in cancer cell proliferation. Their results appear in the May 25 issue of the journal Science.

"There's growing interest in the role of metabolism in cancer, but studies to date have focused on one or two very specific pathways," said senior author Vamsi Mootha, co-director of the Broad Institute's Metabolism Program and a professor at Harvard Medical School and Massachusetts General Hospital. "We took an unbiased approach, looking at all of metabolism, and the glycine emerged."

Mootha and his colleagues developed a technique known as CORE (COnsumption and RElease) profiling, which allowed them to measure the flux of metabolites – the precursors and products of chemical reactions taking place in the body. Most of the time, when researchers measure metabolites, they are taking a snapshot of metabolite levels at a certain point in time. But, just as taking a photo of a highway will not reveal how fast traffic is moving, such measurements do not show which metabolites cells are rapidly consuming or expelling.

"Using CORE, we can quantitatively determine exactly how much of every metabolite is being consumed or released on a per-cell, per-hour basis," said co-first author Mohit Jain, a postdoctoral fellow in the Mootha laboratory. "We can now start to derive flux or transport of nutrients into or out of the cell."

The team applied CORE profiling to the NCI-60, a collection of 60 cancer cell lines that have been studied by the scientific community for many decades. Data about drug sensitivity, the activity of genes and proteins, rates of cell division, and much more are publicly available for these cell lines, which represent nine tumor types. The team's compendium of information about metabolites has also been made publicly available.

One of the most striking results of the new data is how the pattern of glycine consumption relates to the speed of cancer-cell division. In the slowest dividing cells, small amounts of glyine are released into the culture media. But in that are rapidly dividing, glycine is rapaciously consumed. The researchers note that very few metabolites have this unusual pattern of "crossing the zero line," meaning that rapidly dividing cancer cells consume the metabolite while slowly dividing cells actually release it.

"The metabolic activities that enable cancer cells to proliferate quickly or slowly are poorly understood," said Jain. "But across these 60 cell lines, we clearly see this association between how fast cells are dividing and how much glycine they are taking up."

"The CORE method is a kind of screening effort," said co-first author Roland Nilsson, who completed his postdoctoral work in the Mootha laboratory and is now at the Karolinska Institute. "It's a way of searching for metabolic activities that might be interesting. You can take those and proceed to other experiments to validate."

In addition to looking for that correlated with rates of cell division, the team also looked at the expression of almost 1,500 metabolic enzymes. Enzymes required for biosynthesis of glycine within the mitochondria were among the most highly correlated.

"We have two independent methods – metabolite profiling as well as gene expression profiling – both of which point to glycine metabolism as being important for rate of proliferation," said Mootha.

To further validate and understand these results, the team observed what happened when the cancer cells were deprived of glycine, both by removing it from the media and by blocking the enzymes involved in glycine metabolism. In both cases, the fast dividing cancer cells slowed down, but the slower growing cancer cells were unaffected.

A limitation of observing such effects in cancer cells grown in the laboratory is that such cells may behave differently in the human body. One way the researchers followed up this work was to look at data available from studies of breast cancer patients over the last 25 years, searching for potential patterns between survival and the levels of enzymes involved in glycine metabolism. They found that higher levels of these enzymes predicted poorer outcomes for patients.

The researchers envision many future directions for this work, including applying CORE profiling more broadly.

"This method offers a way of getting a quick overview of a particular cell type or tissue, allowing you to see what a cell requires to survive or grow," said Nilsson. "We're interested in applying this in other settings, to liver cells and muscle tissue and to study conditions such as diabetes. There are lots of potential applications."

Explore further: Scientists identify new mechanism of prostate cancer cell metabolism

More information: Jain M, et al., Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation, Science DOI: 10.1126/science.1218595

Related Stories

Scientists identify new mechanism of prostate cancer cell metabolism

March 22, 2012
Cancer cell metabolism may present a new target for therapy as scientists have uncovered a possible gene that leads to greater growth of prostate cancer cells.

Metabolic profiles essential for personalizing cancer therapy

February 7, 2012
One way to tackle a tumor is to take aim at the metabolic reactions that fuel their growth. But a report in the February Cell Metabolism shows that one metabolism-targeted cancer therapy will not fit all. That means that ...

New powerful tool measures metabolites in living cells

March 8, 2012
By engineering cells to express a modified RNA called "Spinach," researchers have imaged small-molecule metabolites in living cells and observed how their levels change over time. Metabolites are the products of individual ...

Researchers unlock key to personalized cancer medicine using tumor metabolism

April 15, 2011
Identifying gene mutations in cancer patients to predict clinical outcome has been the cornerstone of cancer research for nearly three decades, but now researchers at the Kimmel Cancer Center at Jefferson have invented a ...

Key metabolic pathway implicated in intractable form of breast cancer

July 18, 2011
Using a new in vivo screening system, Whitehead Institute researchers have identified a protein in the serine biosynthesis pathway that is essential in estrogen receptor (ER)-negative breast cancer—a notoriously difficult ...

Recommended for you

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

New assay may boost targeted treatment of non-Hodgkin lymphoma

October 17, 2017
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer and the most frequently diagnosed non-Hodgkin lymphoma worldwide (nearly 40% of cases). Recent advancements indicate that both the prognosis and choice of treatment ...

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Newbeak
not rated yet May 24, 2012
This would be a useful tool for assessing the aggressiveness of prostate cancer.I've read there is no current method of determining if a cancer is low grade,where watchful waiting is the order of the day,and aggressive,which must be treated vigorously.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.