New powerful tool measures metabolites in living cells

March 8, 2012, New York- Presbyterian Hospital

By engineering cells to express a modified RNA called "Spinach," researchers have imaged small-molecule metabolites in living cells and observed how their levels change over time. Metabolites are the products of individual cell metabolism. The ability to measure their rate of production could be used to recognize a cell gone metabolically awry, as in cancer, or identify the drug that can restore the cell's metabolites to normal.

Researchers at Weill Cornell Medical College say the advance, described in the March 9 issue of Science, has the potential to revolutionize the understanding of the metabolome, the thousands of that provide of dynamic activity within cells.

"The ability to see metabolites in action will offer us new and powerful clues into how they are altered in disease and help us find treatments that can restore their levels to normal," says Dr. Samie R. Jaffrey, an associate professor of pharmacology at Weill Cornell Medical College. Dr. Jaffrey led the study, which included three other Weill Cornell investigators.

" in cells control so many aspects of their function, and because of this, they provide a powerful snapshot of what is going on inside a cell at a particular time," he says.

For example, biologists know that metabolism in is abnormal; these cells alter their use of glucose for energy and produce unique breakdown products such as lactic acid, thus producing a distinct . "The ability to see these can tell you how the cancer might develop," Dr. Jaffrey says. "But up until now, measuring metabolites has been very difficult in living cells."

In the Science study, Dr. Jaffrey and his team demonstrated that specific sequences can be used to sense levels of metabolites in cells. These RNAs are based on the Spinach RNA, which emits a greenish glow in cells. Dr. Jaffrey's team modified Spinach RNAs so they are turned off until they encounter the metabolite they are specifically designed to bind to, causing the fluorescence of Spinach to be switched on. They designed RNA sequences to trace the levels of five different metabolites in cells, including ADP, the product of ATP, the cell's energy molecule, and SAM (S-Adenosyl methionine), which is involved in methylation that regulates gene activity. "Before this, no one has been able to watch how the levels of these metabolites change in real time in cells," he says.

Delivering the RNA sensors into living cells allows researchers to measure levels of a target metabolite in a single cell as it changes over time. "You could see how these levels change dynamically in response to signaling pathways or genetic changes. And you can screen drugs that normalize those genetic abnormalities," Dr. Jaffrey says. "A major goal is to identify drugs that normalize cellular metabolism."

This strategy overcomes drawbacks of the prevailing method of sensing molecules in using green fluorescent protein (GFP). GFP and other proteins can be used to sense metabolites if they are fused to naturally occurring proteins that bind the metabolite. In some cases, metabolite binding can twist the proteins in a way that affects their fluorescence. However, for most metabolites, there are no proteins available that can be fused to GFP to make sensors.

By using RNAs as metabolite sensors, this problem is overcome. "The amazing thing about RNA is that you can make that bind to essentially any small molecule you want. They can be made in a couple of weeks," Dr. Jaffrey says. These artificial sequences are then fused to and expressed as a single strand of RNA in cells.

"This approach would potentially allow you to take any small molecule metabolite you want to study and see it inside cells," Dr. Jaffrey says. He and his colleagues have expanded the technology to detect proteins and other molecules inside living .

He adds that uses of the technology to understand human biology can be applied to many diseases. "We are very interested in seeing how metabolic changes within brain neurons contribute to developmental disorders such as autism," Dr. Jaffrey says. "There are a lot of opportunities, as far as this new tool is concerned."

Explore further: Breakthrough lights way for RNA discoveries

Related Stories

Breakthrough lights way for RNA discoveries

July 29, 2011
The ability to tag proteins with a green fluorescent light to watch how they behave inside cells so revolutionized the understanding of protein biology that it earned the scientific teams who developed the technique Nobel ...

Giant cell reveals metabolic secrets

January 27, 2012
Chemical reactions within the cell produce intermediate and end products in the form of small molecules called metabolites. Using an approach called metabolomics, a Japanese research team led by Kazuki Saito of the RIKEN ...

Genetic regulation of metabolomic biomarkers -- paths to cardiovascular diseases and type 2 diabetes

January 29, 2012
In a study to the genetic variance of human metabolism, researchers have identified thirty one regions of the genome that were associated with levels of circulating metabolites, i.e., small molecules that take part in various ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.