Low oxygen levels could drive cancer growth

May 3, 2012

Low oxygen levels in cells may be a primary cause of uncontrollable tumor growth in some cancers, according to a new University of Georgia study. The authors' findings run counter to widely accepted beliefs that genetic mutations are responsible for cancer growth.

If , or low in cells, is proven to be a key driver of certain types of cancer, treatment plans for curing the malignant growth could change in significant ways, said Ying Xu, Regents-Georgia Research Alliance Eminent Scholar and professor of bioinformatics and computational biology in the Franklin College of Arts and Sciences.

The research team analyzed samples of data—also called transcriptomic data—from seven different cancer types in a publicly available database. They found that long-term lack of oxygen in cells may be a key driver of . The study was published in the early online edition of the Journal of Molecular Cell Biology.

Previous studies have linked low oxygen levels in cells as a contributing factor in cancer development, but not as the driving force for cancer growth. High incidence rates of cancer around the world cannot be explained by chance genetic mutations alone, Xu said. He added that bioinformatics, which melds biology and computational science, has allowed researchers to see cancer in a new light. Gene-level mutations may give cancer cells a competitive edge over healthy cells, but the proposed new cancer growth model does not require the presence of common malfunctions such as a sudden proliferation of oncogenes, precursors to cancer cells.

"Cancer drugs try to get to the root—at the molecular level—of a particular mutation, but the cancer often bypasses it," Xu said. "So we think that possibly genetic mutations may not be the main driver of cancer."

Much of cancer research so far has focused on designing drug treatments that counteract associated with a particular type of cancer. In their study, the researchers analyzed data downloaded from the Stanford Microarray Database via a software program to detect abnormal gene expression patterns in seven cancers: breast, kidney, liver, lung, ovary, pancreatic and stomach. The online database allows scientists to examine information from microarray chips, which are small glass slides containing large amounts of gene material.

Xu relied on the gene HIF1A as a biomarker of the amount of molecular oxygen in a cell. All seven cancers showed increasing amounts of HIF1A, indicating decreasing oxygen levels in the cancer cells.

Low oxygen levels in a cell interrupt the activity of oxidative phosphorylation, a term for the highly efficient way that cells normally use to convert food to energy. As oxygen decreases, the cells switch to glycolysis to produce their energy units, called ATP. Glycolysis is a drastically less efficient way to obtain energy, and so the cancer cells must work even harder to obtain even more food, specifically glucose, to survive. When oxygen levels dip dangerously low, angiogenesis, or the process of creating new blood vessels, begins. The new blood vessels provide fresh oxygen, thus improving oxygen levels in the cell and tumor and slowing the cancer growth—but only temporarily.

"When a cancer cell gets more food, it grows; this makes the tumor biomass bigger and even more hypoxic. In turn, the energy-conversion efficiency goes further down, making the cells even more hungry and triggering the cells to get more food from blood circulation, creating a vicious cycle. This could be a key driver of cancer," Xu said.

Xu explained that this new cancer-growth model could help explain why many cancers become drug resistant so quickly—often within three to six months. He stressed the importance of testing the new model through future experimental research. If the model holds, researchers will need to search for methods to prevent hypoxia in cells in the first place, which could result in a sea change in .

Explore further: Scientists identify new mechanism of prostate cancer cell metabolism

Related Stories

Scientists identify new mechanism of prostate cancer cell metabolism

March 22, 2012
Cancer cell metabolism may present a new target for therapy as scientists have uncovered a possible gene that leads to greater growth of prostate cancer cells.

Metabolic state of brain cancer stem cells significantly different than the cancer cells they create

September 6, 2011
The metabolic state of glioma stem cells, which give rise to deadly glioblastomas, is significantly different from that of the brain cancer cells to which they give birth, a factor which helps those stem cells avoid treatment ...

Recommended for you

Study suggests colon cancer cells carry bacteria with them when they metastasize

November 24, 2017
(Medical Xpress)—A team of researchers working at Harvard University has found evidence that suggests a certain type of bacteria found in colon cancer tumors makes its way to tumors in other body parts by traveling with ...

Promising new treatment for rare pregnancy cancer leads to remission in patients

November 24, 2017
An immunotherapy drug can be used to cure women of a rare type of cancer arising from pregnancy when existing treatments have failed.

Researchers unravel novel mechanism by which tumors grow resistant to radiotherapy

November 23, 2017
A Ludwig Cancer Research study has uncovered a key mechanism by which tumors develop resistance to radiation therapy and shown how such resistance might be overcome with drugs that are currently under development. The discovery ...

African Americans face highest risk for multiple myeloma yet underrepresented in research

November 23, 2017
Though African-American men are three times more likely to be diagnosed with multiple myeloma, a type of blood cancer, most scientific research on the disease has been based on people of European descent, according to a study ...

Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017
Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers ...

One-size treatment for blood cancer probably doesn't fit all, researchers say

November 22, 2017
Though African-American men are three times more likely to be diagnosed with a blood cancer called multiple myeloma, most scientific research on the disease has been based on people of European descent, according to a study ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.