Protein may represent a switch to turn off B cell lymphoma

May 7, 2012

Researchers studying the molecular signals that drive a specific type of lymphoma have discovered a key biological pathway leading to this type of cancer. Cancerous cells have been described as being "addicted" to certain oncogenes (cancer-causing genes), and the new research may lay the groundwork for breaking that addiction and effectively treating aggressive types of B cell lymphoma.

B cell lymphomas, which occur both in children and adults, are cancers that attack B cells in the immune system.

"Our research suggests ways to devise more specific therapies to selectively kill tumor cells in a subset of lymphomas," said study leader Andrei Thomas-Tikhonenko, Ph.D., an oncology researcher at The Children's Hospital of Philadelphia.

The study, conducted in and human cell cultures, appeared May 1 in The .

An oncogene is a type of gene that normally produces a protein active in cell growth or regulation. However, when the gene is mutated or otherwise overproduced, it can cause cancer. One family of oncogenes is called MYC, and the current study focused on how the MYC oncogene drives . MYC codes for Myc, a type of protein called a transcription factor. At high levels, Myc causes the uncontrolled cell growth that is a hallmark of cancer.

The researchers focused on the crucial role of the CD19, a protein residing on the surface of all B cells that normally recognizes foreign invaders. "We found that CD19 is absolutely required to stabilize the Myc protein," said Thomas-Tikhonenko. "When Myc is stable and present in high levels, it fuels cancer." Patients with high levels of the Myc protein are more likely to die of lymphoma.

Patients with high levels of Myc also had high levels of CD19, and the current study describes a previously unknown molecular pathway that depends on CD19. It also implicates CD19 as a molecular on-off switch on that pathway. Usually, said Thomas-Tikhonenko, when you inhibit one pathway, another pathway compensates to produce the same end result. But in this case, there is no such redundant pathway: "Without CD19, there is no Myc," he added, "so controlling that on-off switch could represent a powerful tool against lymphoma."

The findings are particularly relevant, said Thomas-Tikhonenko, to current oncology clinical trials that are testing antibodies that act broadly against the CD19 receptor. Such antibodies kill all B cells, and thus weaken the immune system. His study suggests that understanding the CD19 pathway could enable researchers to design a more specific therapy that selectively kills tumor cells while sparing healthy .

Further studies in his lab, he added, will further investigate these and how to translate this knowledge into future anti-cancer treatments.

Explore further: Lymphoma therapy could deliver a double punch

More information: "CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis," The Journal of Clinical Investigation, published online May 1, 2012, doi:10.1172/JCI45851

Related Stories

Lymphoma therapy could deliver a double punch

April 30, 2012
B cell lymphomas are a group of cancers of that originate in lymphoid tissue from B cells, the specialized immune cell type that produces antibodies. The development of B cell lymphoma is associated with several known genetic ...

Breaking oncogene's hold on cancer cell provides new treatment direction

December 8, 2011
Just as people's bodies and minds can become addicted to substances such as drugs, caffeine, alcohol, their cancers can become addicted to certain genes that insure their continued growth and dominance.

Recommended for you

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

Combining CAR T cells with existing immunotherapies may overcome resistance in glioblastomas

July 19, 2017
Genetically modified "hunter" T cells successfully migrated to and penetrated a deadly type of brain tumor known as glioblastoma (GBM) in a clinical trial of the new therapy, but the cells triggered an immunosuppressive tumor ...

How CD44s gives brain cancer a survival advantage

July 19, 2017
Understanding the mechanisms that give cancer cells the ability to survive and grow opens the possibility of developing improved treatments to control or cure the disease. In the case of glioblastoma multiforme, the deadliest ...

New way found to boost immunity in fight cancer and infections

July 19, 2017
An international research team led by Université de Montréal medical professor Christopher Rudd, director of research in immunology and cell therapy at Maisonneuve-Rosemont Hospital Research Centre, has identified a key ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.