New brain target for appetite control identified

June 7, 2012

Researchers at Columbia University Medical Center (CUMC) have identified a brain receptor that appears to play a central role in regulating appetite. The findings, published today in the online edition of Cell, could lead to new drugs for preventing or treating obesity.

"We've identified a receptor that is intimately involved in regulating ," said study leader Domenico Accili, MD, professor of Medicine at CUMC. "What is especially encouraging is that this receptor is belongs to a class of receptors that turn out to be good targets for drug development, making it a highly 'druggable' target. In fact, several existing medications already seem to interact with this receptor. So, it's possible that we could have for obesity sooner rather than later."

In their search for new targets for obesity therapies, scientists have focused on the , a tiny that regulates appetite. Numerous studies suggest that the is concentrated in neurons that express a , or brain , called AgRP. But the specific factors that influence AgRP expression are not known.

The CUMC researchers found new clues to by tracing the actions of insulin and leptin. Both hormones are involved in maintaining the body's , and both are known to inhibit AgRP. "Surprisingly, blocking either the insulin or leptin signaling pathway has little effect on appetite," says Dr. Accili. "We hypothesized that both pathways have to be blocked simultaneously in order to influence feeding behavior."

To test their hypothesis, the researchers created a strain of mice whose AgRP neurons lack a protein that is integral to both insulin and leptin signaling. As the researchers hypothesized, removing this protein — Fox01 — had a profound effect on the animals' appetite. "Mice that lack Fox01 ate less and were leaner than normal mice," said lead author Hongxia Ren, PhD, associate research scientist in Medicine. "In addition, the Fox01-deficient mice had better glucose balance and leptin and insulin sensitivity — all signs of a healthier metabolism."

Since Fox01 is a poor drug target, the researchers searched for other ways to inhibit the action of this protein. Using gene-expression profiling, they found a gene that is highly expressed in mice with normal AgRP neurons but is effectively silenced in mice with Fox01-deficient neurons. That gene is Gpr17 (for G-protein coupled receptor 17), which produces a cell-surface receptor called Gpr17.

To confirm that the receptor is involved in appetite control, the researchers injected a Gpr17 activator into normal mice, and their appetite increased. Conversely, when the mice were given a Gpr17 inhibitor, their appetite decreased. Similar injections had no effect on Fox01-deficient mice.

According to Dr. Accili, there are several reasons why Gpr17, which is also found in humans, would be a good target for anti-obesity medications. Since Grp17 is part of the so-called G-protein-coupled receptor family, it is highly druggable. About a third of all existing drugs work through G-protein-coupled receptors. In addition, the receptor is abundant in AgRP neurons but not in other neurons, which should limit unwanted drug side effects.

Explore further: Voluntary exercise by animals prevents weight gain, despite high-fat diet

Related Stories

Voluntary exercise by animals prevents weight gain, despite high-fat diet

May 18, 2011
(Medical Xpress) -- University of Cincinnati (UC) researchers have found that animals on a high-fat diet can avoid weight gain if they exercise.

Appetite accomplice: Ghrelin receptor alters dopamine signaling

January 25, 2012
New research reveals a fascinating and unexpected molecular partnership within the brain neurons that regulate appetite. The study, published by Cell Press in the January 26 issue of the journal Neuron, resolves a paradox ...

Recommended for you

Lactation hormone also helps a mother's brain

September 26, 2017
The same hormone that stimulates milk production for lactation, also acts in the brain to help establish the nurturing link between mother and baby, University of Otago researchers have revealed for the first time.

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.