New brain target for appetite control identified

June 7, 2012, Columbia University Medical Center

Researchers at Columbia University Medical Center (CUMC) have identified a brain receptor that appears to play a central role in regulating appetite. The findings, published today in the online edition of Cell, could lead to new drugs for preventing or treating obesity.

"We've identified a receptor that is intimately involved in regulating ," said study leader Domenico Accili, MD, professor of Medicine at CUMC. "What is especially encouraging is that this receptor is belongs to a class of receptors that turn out to be good targets for drug development, making it a highly 'druggable' target. In fact, several existing medications already seem to interact with this receptor. So, it's possible that we could have for obesity sooner rather than later."

In their search for new targets for obesity therapies, scientists have focused on the , a tiny that regulates appetite. Numerous studies suggest that the is concentrated in neurons that express a , or brain , called AgRP. But the specific factors that influence AgRP expression are not known.

The CUMC researchers found new clues to by tracing the actions of insulin and leptin. Both hormones are involved in maintaining the body's , and both are known to inhibit AgRP. "Surprisingly, blocking either the insulin or leptin signaling pathway has little effect on appetite," says Dr. Accili. "We hypothesized that both pathways have to be blocked simultaneously in order to influence feeding behavior."

To test their hypothesis, the researchers created a strain of mice whose AgRP neurons lack a protein that is integral to both insulin and leptin signaling. As the researchers hypothesized, removing this protein — Fox01 — had a profound effect on the animals' appetite. "Mice that lack Fox01 ate less and were leaner than normal mice," said lead author Hongxia Ren, PhD, associate research scientist in Medicine. "In addition, the Fox01-deficient mice had better glucose balance and leptin and insulin sensitivity — all signs of a healthier metabolism."

Since Fox01 is a poor drug target, the researchers searched for other ways to inhibit the action of this protein. Using gene-expression profiling, they found a gene that is highly expressed in mice with normal AgRP neurons but is effectively silenced in mice with Fox01-deficient neurons. That gene is Gpr17 (for G-protein coupled receptor 17), which produces a cell-surface receptor called Gpr17.

To confirm that the receptor is involved in appetite control, the researchers injected a Gpr17 activator into normal mice, and their appetite increased. Conversely, when the mice were given a Gpr17 inhibitor, their appetite decreased. Similar injections had no effect on Fox01-deficient mice.

According to Dr. Accili, there are several reasons why Gpr17, which is also found in humans, would be a good target for anti-obesity medications. Since Grp17 is part of the so-called G-protein-coupled receptor family, it is highly druggable. About a third of all existing drugs work through G-protein-coupled receptors. In addition, the receptor is abundant in AgRP neurons but not in other neurons, which should limit unwanted drug side effects.

Explore further: Voluntary exercise by animals prevents weight gain, despite high-fat diet

Related Stories

Voluntary exercise by animals prevents weight gain, despite high-fat diet

May 18, 2011
(Medical Xpress) -- University of Cincinnati (UC) researchers have found that animals on a high-fat diet can avoid weight gain if they exercise.

Appetite accomplice: Ghrelin receptor alters dopamine signaling

January 25, 2012
New research reveals a fascinating and unexpected molecular partnership within the brain neurons that regulate appetite. The study, published by Cell Press in the January 26 issue of the journal Neuron, resolves a paradox ...

Recommended for you

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

Research discovers possible link between Crohn's and Parkinson's in Jewish population

January 11, 2018
Mount Sinai Researchers have just discovered that patients in the Ashkenazi Jewish population with Crohn's disease (a chronic inflammatory of the digestive system) are more likely to carry the LRRK2 gene mutation. This gene ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.