'Broken heart syndrome' protects the heart from adrenaline overload

June 27, 2012

A condition that temporarily causes heart failure in people who experience severe stress might actually protect the heart from very high levels of adrenaline, according to a new study published in the journal Circulation. The research provides the first physiological explanation for Takotsubo cardiomyopathy, also called "broken heart syndrome" because it affects people who suffer severe emotional stress after bereavement, and suggests guidance for treatment.

Around 1-2% of people who are initially suspected of having a are finally discovered to have this increasingly recognised syndrome.

The Imperial College London study, which simulated the condition in an , suggests that the body changes its response to by switching from its usual role in stimulating the heart to reducing its pumping power. Although this results in , most patients make a full recovery within days or weeks.

The researchers propose that the switch in the heart's response to adrenaline might have evolved to protect the heart from being overstimulated by the particularly high doses of adrenaline that the body releases during stress.

Patients with Takotsubo cardiomyopathy, most often older women, experience symptoms that resemble a heart attack, but heart tests reveal no blockage in the coronary arteries; instead the heart has a balloon-like appearance caused by the bottom of the heart not contracting properly. The same condition is sometimes seen in people who are injected with adrenaline to treat severe .

In this new research, the authors simulated the condition by injecting high doses of adrenaline in anaesthetised rats. In these rats, as in Takotsubo patients, heart was suppressed towards the bottom of the heart. The researchers found that these rats were protected from an otherwise fatal of the heart, indicating that adrenaline acts through a different pathway from usual, and that this switch protects the heart from toxic levels of adrenaline.

The study also examined drugs that might be useful for treating Takotsubo cardiomyopathy. Some beta blockers, used to treat high blood pressure, angina and heart failure, reproduced or enhanced the features of Takotsubo, giving new insights into the protective effects of these drugs. Levosimendan, a different type of drug given in to stimulate the heart without going through the adrenaline receptor pathways, had a beneficial effect.

"Adrenaline's stimulatory effect on the heart is important for helping us get more oxygen around the body in stressful situations, but it can be damaging if it goes on for too long," said Professor Sian Harding, from the National Heart and Lung Institute (NHLI) at Imperial College London, who led the study. "In patients with Takotsubo cardiomyopathy, adrenaline works in a different way and shuts down the heart instead. This seems to protect the heart from being overstimulated."

Study co-author Dr Alexander Lyon, also from the NHLI at Imperial, and consultant cardiologist at Royal Brompton Hospital, set up one of the first specialist services in the UK to look after people who have experienced Takotsubo cardiomyopathy. "Currently it is not fully known how to treat these patients," he said. "Insights from this work show that the illness may be protecting them from more serious harm. We've identified a drug treatment that might be helpful, but the most important thing is to recognise the condition, and not to make it worse by giving patients with Takotsubo cardiomyopathy more adrenaline or adrenaline-like medications."

"At the Royal Brompton Hospital and Imperial College London we are leading a European initiative to bring together experts to understand this recently recognised cardiac syndrome, and we hope the findings from this work will lead to new treatment strategies for these patients during the acute phase of their illness, and to prevent recurrence".

The study was funded by the British Heart Foundation (BHF), the Wellcome Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Academy of Medical Sciences.

Dr Shannon Amoils, Research Advisor at the BHF, said:

"This is a fascinating study which presents a possible explanation for the signs of Takotsubo , a rare condition that's usually preceded by intense emotional or physical stress. Patients usually have symptoms that resemble those of a heart attack but nearly all fully recover after a short time.

"The study also provides new insights into how the heart may protect itself from stress, which opens up exciting avenues of exploration for research. We must remember though that this is a study in rats, and the findings need to be confirmed in people before we can be sure of their relevance to patients."

Explore further: Women more likely to have 'broken heart syndrome'

More information: H Paur et al. 'High levels of circulating epinephrine trigger apical cardiodepression in a β2-1 adrenoceptor/Gi-dependent manner: a new model of Takotsubo Cardiomyopathy' Circulation, published online 25 June 2012.

Related Stories

Women more likely to have 'broken heart syndrome'

November 16, 2011
A woman's heart breaks more easily than a man's.

'Popeye' proteins help the heart adapt to stress

February 24, 2012
(Medical Xpress) -- A family of proteins named after Popeye play an essential role in allowing the heart to respond to stress, according to a study published today in the Journal of Clinical Investigation. The finding could ...

Is there really such a thing as a broken heart?

February 8, 2012
On Valentine's Day, people who have been unlucky in love are sometimes said to suffering from a "broken heart."

The leading cause of death for diabetics: Getting to the heart of problem

February 13, 2012
Millions of people suffer from type 2 diabetes. The leading cause of death in these patients is heart disease. Joseph Hill and colleagues, at the University of Texas Southwestern Medical Center, Dallas, have now identified, ...

Heart failure's effects in cells can be reversed with a rest

April 2, 2012
Structural changes in heart muscle cells after heart failure can be reversed by allowing the heart to rest, according to research at Imperial College London. Findings from a study in rats published today in the European Journal ...

Recommended for you

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...

Blood cancer gene could be key to preventing heart failure

October 16, 2017
A new study, published today in Circulation, shows that the gene Runx1 increases in damaged heart muscle after a heart attack. An international collaboration led by researchers from the University of Glasgow, found that mice ...

Mitochondrial DNA could predict risk for sudden cardiac death, heart disease

October 11, 2017
Johns Hopkins researchers report that the level, or "copy number," of mitochondrial DNA—genetic information stored not in a cell's nucleus but in the body's energy-creating mitochondria—is a novel and distinct biomarker ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.