Study explains fast tumor migration

June 12, 2012, University of California - Berkeley
This image shows the traction polarization along the direction of migration for a cell in a confined space, explaining increased migration speed.

(Phys.org) -- Bioengineering Professor Sanjay Kumar’s lab at the UC Berkeley today released major new research showing that tumor cells are able to migrate faster through confined spaces in the body.

The findings are published in the Proceedings of the National Academy of Sciences, co-authored by Kumar and postdoctoral researcher Amit Pathak.

Scientists know that the invasion of tumors through tissue is regulated both by mechanical properties of the tissue, such as its stiffness, and tissue microstructure properties, such as pore size. However, past attempts to study and understand these mechanisms in detail have been complicated by the fact that it is extremely difficult to change one property without changing the other.

Through newly-developed techniques, the Kumar Lab has shown for the first time that the two parameters regulate motility in very different ways and, rather surprisingly, confinement of actually enables them to move more rapidly and directionally than they do in wide open spaces.

The researchers have developed a microfabricated platform that enables the creation of 3D channels of independently-defined size and stiffness. This structure allowed them to see that narrow channels enable cells to develop traction against the scaffold in a more focused way.

“Since there is only one way to go,” explained Kumar, “the cell doesn’t waste its ‘energy’ exploring other avenues.”

This may be a physiologically important mechanism, as malignant brain tumors tend to infiltrate most rapidly along tissue interfaces and confined spaces, such as blood vessels and nerve tracts.

Explore further: Scientists discover that squeezed cells pop out of overcrowded tissues

More information: www.pnas.org/content/early/201 … 073109.full.pdf+html

Related Stories

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Essential protein for the formation of new blood vessels identified

January 17, 2012
New research explains how cells regulate their bonds during the development of new blood vessels. For the first time, the role of the protein Raf-1 in determining the strength of the bond between cells has been shown. If ...

Picking cancer stem cells out of the crowd

June 15, 2011
(Medical Xpress) -- Stem cells receive a vast amount of research attention due to their abilities to differentiate, heal, and divide in perpetuity, properties that yield promise for regenerative medicine. In cancer stem cells, ...

Scientists discover how cancers generate muscle-like contractions to spread around the body

August 16, 2011
Cancer Research UK-funded scientists have discovered that a protein called JAK triggers contractions in tumors which allows cancer cells to squeeze though tiny spaces and spread, in research published in Cancer Cell today.

Recommended for you

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.