Study explains fast tumor migration

June 12, 2012
This image shows the traction polarization along the direction of migration for a cell in a confined space, explaining increased migration speed.

(Phys.org) -- Bioengineering Professor Sanjay Kumar’s lab at the UC Berkeley today released major new research showing that tumor cells are able to migrate faster through confined spaces in the body.

The findings are published in the Proceedings of the National Academy of Sciences, co-authored by Kumar and postdoctoral researcher Amit Pathak.

Scientists know that the invasion of tumors through tissue is regulated both by mechanical properties of the tissue, such as its stiffness, and tissue microstructure properties, such as pore size. However, past attempts to study and understand these mechanisms in detail have been complicated by the fact that it is extremely difficult to change one property without changing the other.

Through newly-developed techniques, the Kumar Lab has shown for the first time that the two parameters regulate motility in very different ways and, rather surprisingly, confinement of actually enables them to move more rapidly and directionally than they do in wide open spaces.

The researchers have developed a microfabricated platform that enables the creation of 3D channels of independently-defined size and stiffness. This structure allowed them to see that narrow channels enable cells to develop traction against the scaffold in a more focused way.

“Since there is only one way to go,” explained Kumar, “the cell doesn’t waste its ‘energy’ exploring other avenues.”

This may be a physiologically important mechanism, as malignant brain tumors tend to infiltrate most rapidly along tissue interfaces and confined spaces, such as blood vessels and nerve tracts.

Explore further: Scientists discover that squeezed cells pop out of overcrowded tissues

More information: www.pnas.org/content/early/201 … 073109.full.pdf+html

Related Stories

Scientists discover that squeezed cells pop out of overcrowded tissues

April 16, 2012
(Medical Xpress) -- Cancer Research UK scientists have shown that increasing pressure ejects surplus healthy cells from overcrowded tissues, revealing a possible link between this process  and the spread of cancer, according ...

Essential protein for the formation of new blood vessels identified

January 17, 2012
New research explains how cells regulate their bonds during the development of new blood vessels. For the first time, the role of the protein Raf-1 in determining the strength of the bond between cells has been shown. If ...

Picking cancer stem cells out of the crowd

June 15, 2011
(Medical Xpress) -- Stem cells receive a vast amount of research attention due to their abilities to differentiate, heal, and divide in perpetuity, properties that yield promise for regenerative medicine. In cancer stem cells, ...

Scientists discover how cancers generate muscle-like contractions to spread around the body

August 16, 2011
Cancer Research UK-funded scientists have discovered that a protein called JAK triggers contractions in tumors which allows cancer cells to squeeze though tiny spaces and spread, in research published in Cancer Cell today.

Recommended for you

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

Scientists develop novel immunotherapy technology for prostate cancer

August 17, 2017
A study led by scientists at The Wistar Institute describes a novel immunotherapeutic strategy for the treatment of cancer based on the use of synthetic DNA to directly encode protective antibodies against a cancer specific ...

Toxic formaldehyde is produced inside our own cells, scientists discover

August 16, 2017
New research has revealed that some of the toxin formaldehyde in our bodies does not come from our environment - it is a by-product of an essential reaction inside our own cells. This could provide new targets for developing ...

Cell cycle-blocking drugs can shrink tumors by enlisting immune system in attack on cancer

August 16, 2017
In the brief time that drugs known as CDK4/6 inhibitors have been approved for the treatment of metastatic breast cancer, doctors have made a startling observation: in certain patients, the drugs—designed to halt cancer ...

Researchers find 'switch' that turns on immune cells' tumor-killing ability

August 16, 2017
Molecular biologists led by Leonid Pobezinsky and his wife and research collaborator Elena Pobezinskaya at the University of Massachusetts Amherst have published results that for the first time show how a microRNA molecule ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.