Lymph node roundabout: Researchers probe origin of optimized antibodies against infections

June 28, 2012
This shows the division and selection of B cells inside germinal center of lymph node (computer simulation): Blue cells are in the process of dividing, while green cells are in the process of being selected. Grey cells are in the process of leaving the germinal center. Credit: HZI/M. Meyer-Hermann

An organism's ability to make new antibodies and use them to optimize its own immune defenses is of central importance in the fight against pathogens. In the case of severe infections, the overall relative speed with which an immune response proceeds could mean the difference between life and death. An international team of scientists, among them systems immunologist Prof. Michael Meyer-Hermann of the Helmholtz Centre for Infection Research (HZI) of Braunschweig, Germany, has now found that asymmetric division of antibody-producing B cells speeds up the body's immune defenses. Early on, one daughter cell starts making antibodies while the other works at refining its own antibodies. The researchers' findings are due to be published in the upcoming issue of the scientific journal, Cell Reports.

Our immune system produces as effective long-term weapons against viral or bacterial infections or following vaccination. Antibodies are made in by specialized cells called B lymphocytes. In certain areas within a lymph node - called germinal centers - these first undergo a process of selection.

B cells proliferate, mutate, and thereby change their antibodies. The immune system then checks to make sure whether or not these mutations translate into an improved . If so, the cells in question are selected. The final outcome is the production of optimized antibodies capable of efficiently attaching to a particular pathogen and thereby inactivating it or labeling it for subsequent destruction by phagocytic scavenger cells. "As part of this evolutionary process, the immune system takes turns between chance mutations and best-candidate-selection," explains Michael Meyer-Hermann, Director of the HZI's Department of Systems Immunology and professor of at the Technische Universität Braunschweig. "We are calling it the 'recycling hypothesis'." All of this allows the immune system to make sure that any antibody it produces is maximally effective against the particular pathogen it is looking to fight.

A year and a half ago, an international team of New York-based and HZI researchers described this process of antibody optimization experimentally in great detail. However, up until now, the nature of the trade-off relationship between mutation and selection was unclear. "There has been a lot of debate about whether or not one should picture this process as a one-way street or as a roundabout," says Meyer-Hermann. As the study's first author, Meyer-Hermann has analyzed his colleagues' experimental results mathematically and determined that the earlier measurements are only compatible with the idea of a roundabout.

At the beginning of the year, a team of British researchers from London showed that B cell division is asymmetric, resulting in production of unequal daughter cells. At first, the purpose of this kind of asymmetric cellular division seemed uncertain. Meyer-Hermann's analyses suggest that one of the two daughter cells leaves the germinal center and starts producing antibodies while the other stays behind and undergoes another round of mutation and selection inside the germinal center. The mathematical model illustrates the advantage of this type of set-up. While one fairly specialized daughter cell is already making antibodies, its clone, which can be further optimized in the next round, stays behind. Compared with symmetric division, in asymmetric division there is a tenfold increase in the number of antibodies produced. In addition, the cell that stays behind in the germinal center stores information regarding a successful antibody it has produced, and the optimization process thus concludes more quickly. "This kind of time-saving in antibody production can be a real life-saver in the case of a dangerous infection," explains Michael Meyer-Hermann.

Explore further: New study shows how B cells may generate antibodies after vaccination

Related Stories

New study shows how B cells may generate antibodies after vaccination

December 15, 2011
Steve Reiner, MD, professor of Medicine, and Burton Barnett, a doctoral student in the Reiner lab at the Perelman School of Medicine at the University of Pennsylvania, have shown how immune cells, called B lymphocytes, are ...

Specialized regulatory T cell stifles antibody production centers

July 25, 2011
A regulatory T cell that expresses three specific genes shuts down the mass production of antibodies launched by the immune system to attack invaders, a team led by scientists at The University of Texas MD Anderson Cancer ...

Ancient gene found to control potent antibody response to retroviruses

October 6, 2011
A researcher at MIT's Koch Institute for Integrative Cancer research has identified a gene that controls the process by which antibodies gain their ability to combat retroviruses. Edward Browne shows that the gene TLR7 allows ...

Recommended for you

Exposure to larger air particles linked to increased risk of asthma in children

December 15, 2017
Researchers at The Johns Hopkins University report statistical evidence that children exposed to airborne coarse particulate matter—a mix of dust, sand and non-exhaust tailpipe emissions, such as tire rubber—are more ...

Bioengineers imagine the future of vaccines and immunotherapy

December 14, 2017
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors. A flu vaccine might look and feel like applying a small, round Band-Aid to your skin.

Immune cells turn back time to achieve memory

December 13, 2017
Memory T cells earn their name by embodying the memory of the immune system - they help the body remember what infections or vaccines someone has been exposed to. But to become memory T cells, the cells go backwards in time, ...

Steroid study sheds light on long term side effects of medicines

December 13, 2017
Fresh insights into key hormones found in commonly prescribed medicines have been discovered, providing further understanding of the medicines' side effects.

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.