With mind-reading speller, free-for-all conversations that are silent and still

June 28, 2012
Researchers have come up with a device that may enable people who are completely unable to speak or move at all to nevertheless manage unscripted back-and-forth conversation. The key to such silent and still communication is the first real-time, brain-scanning speller, according to the report published online on June 28 in Current Biology.

Researchers have come up with a device that may enable people who are completely unable to speak or move at all to nevertheless manage unscripted back-and-forth conversation. The key to such silent and still communication is the first real-time, brain-scanning speller, according to the report published online on June 28 in Current Biology.

The new technology builds on groundbreaking earlier uses of fMRI brain scans to assess consciousness in people described as being in an unconscious, vegetative state and to enable them to answer yes and no questions. fMRI (or ) is typically used for clinical and research purposes to track by measuring blood flow.

"The work of Adrian Owen and colleagues led me to wonder whether it might even become possible to use fMRI, , and appropriate experimental designs to freely encode thoughts, letter-by-letter, and therewith enable back-and-forth communication in the absence of ," said Bettina Sorger of Maastricht University in The Netherlands.

The video will load shortly.
This video shows mental task-related brain activation patterns. Video (c) Current Biology

The new evidence shows that the answer to that thought question is yes. Sorger's team came up with a letter-encoding technique that requires almost no pre-training. Participants in their study voluntarily selected letters on a screen, which guided the letter encoding; for each specific character, participants were asked to perform a particular mental task for a set period of time. That produced 27 distinct corresponding to each letter of the alphabet and the equivalent of a space bar, which could be automatically decoded in real-time using newly developed data analysis methods.

In each communication experiment, participants held a mini-conversation consisting of two open questions and answers. Everyone the researchers tested was able to successfully produce answers within a single one-hour session.

The results substantially extend earlier uses of fMRI, which allowed individuals to answer the equivalent of multiple-choice questions having four or fewer possible answers, by enabling free-letter spelling. That could make all the difference for people who are completely paralyzed and unable to benefit from other means of alternative communication, Sorger says.

Ultimately, she says their goal is to transfer the fMRI technology they've developed to a more portable and affordable method for measuring blood flow, such as functional near-infrared spectroscopy (fNIRS).

Explore further: People control thoughts better when they see their brain activity: study

More information: Current Biology, July 24, 2012 print issue print issue. DOI:10.1016/j.cub.2012.05.022

Related Stories

People control thoughts better when they see their brain activity: study

April 8, 2011
As humans face increasing distractions in their personal and professional lives, University of British Columbia researchers have discovered that people can gain greater control over their thoughts with real-time brain feedback.

EEG can detect awareness in people previously thought to be in permanently vegetative state

November 9, 2011
A study published Online First by the Lancet shows that -- using a cheap, portable electroencephalography (EEG) device -- awareness can be detected in people previously thought to be in a permanently vegetative state. The ...

Can new diagnostic approaches help assess brain function in unconscious, brain-injured patients?

May 9, 2012
Disorders of consciousness such as coma or a vegetative state caused by severe brain injury are poorly understood and their diagnosis has relied mainly on patient responses and measures of brain activity. However, new functional ...

Challenges of identifying cognitive abilities in severely brain-injured patients

February 13, 2012
Only by employing complex machine-learning techniques to decipher repeated advanced brain scans were researchers at NewYork-Presbyterian/Weill Cornell able to provide evidence that a patient with a severe brain injury could, ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.