Study reveals how transcription factor EVI1 contributes to cancer development and tumor invasion

June 20, 2012
Credit: iStockphoto.com/AlexRaths

Since its discovery close to 25 years ago, the EVI1 gene has emerged as a major player in many different types of cancer, including leukemia and tumors of the breast, prostate and colon, among other organs. In the US, for example, there is a company called NanoOncology that was founded to develop drugs for blocking this oncogene. Yet, despite all the interest in EVI1, very few of the gene’s downstream targets are known.

Emilie Bard-Chapeau at the A*STAR Institute of Molecular and Cell Biology and co-workers1 have now used a systems biology approach to identify a slew of tumor-associated genes that are controlled by EVI1. The discovery could lead to new therapeutic strategies to combat various forms of cancer.

The EVI1 gene — short for ‘ecotropic viral integration site 1’ — encodes a zinc-finger transcription factor with two distinct DNA binding domains. When overexpressed, this leads to aggressive forms of cancer and poor patient survival. To better understand the biochemical functions of EVI1, Bard-Chapeau and co-workers searched for gene promoters and cooperating that are actively bound by EVI1 in human ovarian cancer and chronic myeloid cell lines.

Systems biology uses a palette of analytical and computational techniques to study the complex interactions in biological systems. Using microarrays, ChIP-sequencing and immunoprecipitation assays, the researchers found that the two different zinc-finger domains of EVI1 activate unique sets of target genes, many of which are involved in cell adhesion, proliferation, colony formation and other aspects of growth.

Notably, the researchers documented a strong association between EVI1 and FOS — the latter being one of the main components of the activator protein 1 (AP1) transcription factor complex that is known to drive tumorigenesis. Experiments in cell lines showed that EVI1 and FOS interact to co-regulate many hallmarks of cancer, and follow-up analyses in late-stage ovarian cancers taken from patients revealed an enrichment in expressed genes linked to both EVI1 and AP1. Taken together, the findings suggest that EVI1 expression might serve to fully elicit FOS oncogenic potential through a feed-forward regulatory loop that drives abnormal tissue changes.

“Our study has provided new mechanistic insights into the regulatory mechanism of EVI1, and revealed how EVI1 can function as a central player in many types of late-stage cancers,” says Bard-Chapeau. “Disruption of the interaction between EVI1 and FOS may be a very interesting way to prevent cancer progression.”

Explore further: New approach to link genome-wide association signals to biological function

More information: Bard-Chapeau, E. A. et al. Ecotopic viral integration site 1 (EVI1) regulates multiple cellular processes important for cancer and is a synergistic partner for FOS protein in invasive tumors. Proceedings of the National Academy of Sciences 109, 2168–2173 (2012).

Related Stories

New approach to link genome-wide association signals to biological function

June 30, 2011
Researchers have developed a new strategy to improve the outcome of genome-wide association (GWA) studies.

Scientists identify new mechanism of prostate cancer cell metabolism

March 22, 2012
Cancer cell metabolism may present a new target for therapy as scientists have uncovered a possible gene that leads to greater growth of prostate cancer cells.

New lung cancer gene found

July 19, 2011
A major challenge for cancer biologists is figuring out which among the hundreds of genetic mutations found in a cancer cell are most important for driving the cancer’s spread.

New study identifies novel role for PEA-15 protein in cancer growth

November 21, 2011
A new study from the University of Hawaii Cancer Center reveals that PEA-15, a protein previously shown to slow ovarian tumor growth and metastasis, can alternatively enhance tumor formation in kidney cells carrying a mutation ...

Recommended for you

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Cancer vaccines need to target T cells that can persist in the long fight against cancer

September 25, 2017
Cancer vaccines may need to better target T cells that can hold up to the long fight against cancer, scientists report.

Lung cancer treatment could be having negative health effect on hearts

September 25, 2017
Radiotherapy treatment for lung cancer could have a negative effect on the health of your heart new research has found.

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.