Manipulation of a specific neural circuit buried in complicated brain networks in primates

June 17, 2012

A collaborative research team led by Professor Tadashi ISA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University, developed a "double viral vector transfection technique" which can deliver genes to a specific neural circuit by combining two new kinds of gene transfer vectors. With this method, they found that "indirect pathways", which were suspected to have been left behind when the direct connection from the brain to motor neurons (which control muscles) was established in the course of evolution, actually plays an important role in the highly developed dexterous hand movements. This study was supported by the Strategic Research Program for Brain Sciences by the MEXT of Japan. This research result will be published in Nature (June 17th, advance online publication).

It is said that the higher primates including human beings accomplished explosive evolution by having acquired the ability to move hands skillfully. It has been thought that this ability to move individual fingers is a result of the evolution of the direct connection from the cerebrocortical motor area to of the spinal cord which control the muscles. On the other hand, in lower animals with clumsy hands, such as cats or rats, the cortical motor area is connected to the motor neurons, only through of the spinal cord. Such "indirect pathway"remains in us, primates, without us fully understanding its functions. Is this "phylogenetically old circuit" still in operation? Or maybe suppressed since it is obstructive? The conclusion was not attached to this argument.

The collaborative research team led by Professor Tadashi ISA, Project Assistant Professor Masaharu KINOSHITA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University developed "the double transfection technique"which can deliver genes to a specific by combining two new kinds of vectors.

With this method, they succeeded in the selective and reversible suppression of the propriospinal neurons (spinal interneurons mediating the indirect connection from cortical motor area to spinal motor neurons)

The results revealed that "indirect pathways" play an important role in dexterous hand movements and finally a longtime debate has come to a close.

The key component of this discovery was"the double viral vector transfection technique"in which one vector is retrogradely transported from the terminal zone back to the neuronal cell bodies and the other is transfected at the location of their cell bodies. The expression of the target gene is regulated only in the cells with double transfection by the two vectors. Using this technique, they succeeded in the suppression of the propriospinal neuron selectively and reversibly.

Such an operation was possible in mice in which the inheritable genetic manipulation of germline cells were possible, but impossible in primates until now.

Using this method, further development of gene therapy targeted to a specific neural circuit can be expected.

Professor Tadashi ISA says "this newly developed double viral vector transfection technique can be applied to the gene therapy of the human central nervous system, as we are the same higher primates.

And this is the discovery which reverses the general idea that the spinal cord is only a reflex pathway, but also plays a pivotal role in integrating the complex neural signals which enable dexterous movements."

Explore further: Anatomical blueprint for motor antagonism identified

Related Stories

Anatomical blueprint for motor antagonism identified

October 20, 2011
(Medical Xpress) -- Walking or movement in general, comes so naturally to us, yet it results from a sophisticated interplay between the nervous system and muscles. Little is known about the neuronal blueprint that ensures ...

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.