Manipulation of a specific neural circuit buried in complicated brain networks in primates

June 17, 2012, National Institute for Physiological Sciences

A collaborative research team led by Professor Tadashi ISA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University, developed a "double viral vector transfection technique" which can deliver genes to a specific neural circuit by combining two new kinds of gene transfer vectors. With this method, they found that "indirect pathways", which were suspected to have been left behind when the direct connection from the brain to motor neurons (which control muscles) was established in the course of evolution, actually plays an important role in the highly developed dexterous hand movements. This study was supported by the Strategic Research Program for Brain Sciences by the MEXT of Japan. This research result will be published in Nature (June 17th, advance online publication).

It is said that the higher primates including human beings accomplished explosive evolution by having acquired the ability to move hands skillfully. It has been thought that this ability to move individual fingers is a result of the evolution of the direct connection from the cerebrocortical motor area to of the spinal cord which control the muscles. On the other hand, in lower animals with clumsy hands, such as cats or rats, the cortical motor area is connected to the motor neurons, only through of the spinal cord. Such "indirect pathway"remains in us, primates, without us fully understanding its functions. Is this "phylogenetically old circuit" still in operation? Or maybe suppressed since it is obstructive? The conclusion was not attached to this argument.

The collaborative research team led by Professor Tadashi ISA, Project Assistant Professor Masaharu KINOSHITA from The National Institute for Physiological Sciences, The National Institutes of Natural Sciences and Fukushima Medical University and Kyoto University developed "the double transfection technique"which can deliver genes to a specific by combining two new kinds of vectors.

With this method, they succeeded in the selective and reversible suppression of the propriospinal neurons (spinal interneurons mediating the indirect connection from cortical motor area to spinal motor neurons)

The results revealed that "indirect pathways" play an important role in dexterous hand movements and finally a longtime debate has come to a close.

The key component of this discovery was"the double viral vector transfection technique"in which one vector is retrogradely transported from the terminal zone back to the neuronal cell bodies and the other is transfected at the location of their cell bodies. The expression of the target gene is regulated only in the cells with double transfection by the two vectors. Using this technique, they succeeded in the suppression of the propriospinal neuron selectively and reversibly.

Such an operation was possible in mice in which the inheritable genetic manipulation of germline cells were possible, but impossible in primates until now.

Using this method, further development of gene therapy targeted to a specific neural circuit can be expected.

Professor Tadashi ISA says "this newly developed double viral vector transfection technique can be applied to the gene therapy of the human central nervous system, as we are the same higher primates.

And this is the discovery which reverses the general idea that the spinal cord is only a reflex pathway, but also plays a pivotal role in integrating the complex neural signals which enable dexterous movements."

Explore further: Anatomical blueprint for motor antagonism identified

Related Stories

Anatomical blueprint for motor antagonism identified

October 20, 2011
(Medical Xpress) -- Walking or movement in general, comes so naturally to us, yet it results from a sophisticated interplay between the nervous system and muscles. Little is known about the neuronal blueprint that ensures ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.