Researchers, with stem cells, advance understanding of spinal muscular atrophy

June 20, 2012, Cedars-Sinai Medical Center

Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ to find a for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how taken from a patient with the disorder were used to generate neurons of the same and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a necessary for them to survive. The study found these cells die through apoptosis – the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model – and then be reproduced in clinical trials."

Explore further: Researchers identify genetic mutation causing rare form of spinal muscular atrophy

Related Stories

Researchers identify genetic mutation causing rare form of spinal muscular atrophy

May 10, 2012
Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, ...

Scientists find possible cause of movement defects in spinal muscular atrophy

April 11, 2012
(Medical Xpress) -- An abnormally low level of a protein in certain nerve cells is linked to movement problems that characterize the deadly childhood disorder spinal muscular atrophy, new research in animals suggests.

Researchers find new insight into spinal muscular atrophy

September 26, 2011
Researchers at the University of Missouri have identified a communication breakdown between nerves and muscles in mice that may provide new insight into the debilitating and fatal human disease known as spinal muscular atrophy ...

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.