When being scared twice is enough to remember

June 12, 2012

One of the brain's jobs is to help us figure out what's important enough to be remembered. Scientists at Yerkes National Primate Research Center, Emory University have achieved some insight into how fleeting experiences become memories in the brain.

Their experimental system could be a way to test or refine treatments aimed at enhancing learning and memory, or interfering with troubling memories. The results were published recently in the Journal of Neuroscience.

The researchers set up a system where were exposed to a light followed by a mild shock. A single light-shock event isn't enough to make the rat afraid of the light, but a repeat of the pairing of the light and shock is, even a few days later.

"I describe this effect as 'priming'," says the first author of the paper, postdoctoral fellow Ryan Parsons. "The animal experiences all sorts of things, and has to sort out what's important. If something happens just once, it doesn't register. But twice, and the animal remembers."

Parsons was working with Michael Davis, PhD, Robert W. Woodruff professor of psychiatry and at Emory University School of Medicine, who has been studying the for fear memory for several years.

Even though a robust fear memory was not formed after the first priming event, at that point Parsons could already detect in the amygdala, part of the brain critical for fear responses. formation could be blocked by infusing a drug into the . The drug inhibits A, which is involved in the chemical changes Parsons observed.

It is possible to train rats to become afraid of something like a sound or a smell after one event, Parsons says. However, rats are less sensitive to light compared with sounds or smells, and a relatively mild shock was used.

Fear memories only formed when shocks were paired with light, instead of noise or nothing at all, for both the priming and the confirmation event. Parsons measured how afraid the rats were by gauging their "acoustic startle response" (how jittery they were in response to a loud noise) in the presence of the light, compared to before training began.

Scientists have been able to study the chemical changes connected with the priming process extensively in neurons in culture dishes, but not as much in live animals. The process is referred to as "metaplasticity," or how the history of the brain's experiences affects its readiness to change and learn.

"This could be a good model for dissecting the mechanisms involved in ," Parsons says. "We're going to be able to look at what's going on in that first priming event, as well as when the long-term memory is triggered."

"We believe our findings might help explain how events are selected out for long-term storage from what is essentially a torrent of information encountered during conscious experience," Parsons and Davis write in their paper.

Explore further: Study offers new insight for preventing fear relapse after trauma

More information: R.G. Parsons and M. Davis. A metaplasticity-like mechanism supports the selection of fear memories: role of protein kinase A in the amygdala. J. Neurosci 32: 7843-7851 (2012).

Related Stories

Study offers new insight for preventing fear relapse after trauma

November 29, 2011
(Medical Xpress) -- In a new study, University of Michigan researchers identified brain circuits in rats that are responsible for the return of fear after it has been suppressed behaviorally.

Rats recall past to make daily decisions

May 3, 2012
(Medical Xpress) -- UCSF scientists have identified patterns of brain activity in the rat brain that play a role in the formation and recall of memories and decision-making. The discovery, which builds on the team's previous ...

Researchers pinpoint genetic connection to traumatic experience

February 1, 2012
Rutgers scientists have uncovered genetic clues as to why some mice no longer in danger are still fearful while others are resilient to traumatic experiences – knowledge that could help those suffering with crippling ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.