Study shows how aging impairs immune response

July 17, 2012

Researchers at Albert Einstein College of Medicine of Yeshiva University have uncovered one of the mechanisms by which aging may compromise the ability of the immune system to fight infections and respond to vaccines. The study, conducted in aging mice, shows that administering antioxidants may help reverse this loss of immune function. The findings were published online this month in the journal Cell Reports.

"Aging is known to affect , a phenomenon known as immunosenescence, but how this happens is not clear," said study leader Laura Santambrogio, M.D., Ph.D. , associate professor of and of & immunology at Einstein. "Our study has uncovered several ways in which aging can worsen the body's overall ability to mount an effective immune response."

All cells generate chemicals called free radicals as a normal part of metabolism. These highly reactive, unstable molecules can readily damage proteins, lipids and other cellular components through oxidation (the reaction between oxygen and substances it comes in contact with). Cells keep "oxidative stress" in check by producing several enzymes that are scavengers of free radicals. But in aging, increased production of free radicals coupled with cells' decreased production of antioxidant enzymes cause a buildup of damaged proteins and other molecules that can be toxic to cells.

The current study is the first to examine whether age-related oxidative stress compromises the function of a type of immune cell called dendritic cells. "Dendritic cells are known as the 'sentinels of the ' and alert the rest of the immune system to the presence of microbial invaders," explained Dr. Santambrogio. "When you are exposed to viruses or bacteria, these cells engulf the pathogens and present them to the immune system, saying in effect, 'There's an infection going on, and here is the culprit—go get it.'"

Dr. Santambrogio, in collaboration with Einstein colleagues Fernando Macian-Juan, M.D., Ph.D. , and Ana Maria Cuervo, M.D., Ph.D. , isolated dendritic cells from aging and found that oxidation-damaged proteins had accumulated in those cells and had caused harmful effects. For example, oxidatively modified proteins hampered the function of endosomes, the cell's organelle where pathogens are inactivated.

When the mice were injected with a potent antioxidant in the abdominal cavity daily for two weeks, some of the effects of oxidative stress were reversed. This finding has implications for designing vaccines or therapies for humans, especially the elderly, whose weakened immune systems increase their susceptibility to infections and cancer, and reduces effectiveness. "Many elderly people respond very poorly to vaccination, so perhaps a cycle of therapy with before vaccination might improve their immune response to vaccines," Dr. Santambrogio noted.

Explore further: How excess alcohol depresses immune function

More information: The paper is titled "Age-related Oxidative Stress Compromises Endosomal Proteostasis."

Related Stories

How excess alcohol depresses immune function

August 16, 2011
Alcoholism suppresses the immune system, resulting in a high risk of serious, and even life-threatening infections. A new study shows that this effect stems largely from alcohol’s toxicity to immune system cells called ...

Manipulating the immune system to develop 'next-gen' vaccines

April 5, 2012
The discovery of how a vital immune cell recognises dead and damaged body cells could modernise vaccine technology by 'tricking' cells into launching an immune response, leading to next-generation vaccines that are more specific, ...

Skin sentry cells promote distinct immune responses

July 21, 2011
A new study reveals that just as different soldiers in the field have different jobs, subsets of a type of immune cell that polices the barriers of the body can promote unique and opposite immune responses against the same ...

Recommended for you

Researchers create skeletal muscle from stem cells

December 18, 2017
UCLA scientists have developed a new strategy to efficiently isolate, mature and transplant skeletal muscle cells created from human pluripotent stem cells, which can produce all cell types of the body. The findings are a ...

Fruit fly breakthrough may help human blindness research

December 18, 2017
For decades, scientists have known that blue light will make fruit flies go blind, but it wasn't clear why. Now, a Purdue University study has found how this light kills cells in the flies' eyes, and that could prove a useful ...

Tiny bilirubin-filled capsules could improve survival of transplanted pancreatic cells

December 18, 2017
By encapsulating bilirubin within tiny nanoparticles, researchers from North Carolina State University and the Ohio State University have improved the survival rates of pancreatic islet cells in vitro in a low-oxygen environment. ...

Tracking effects of a food preservative on the gut microbiome

December 18, 2017
Antimicrobial compounds added to preserve food during storage are believed to be benign and non-toxic to the consumer, but there is "a critical scientific gap in understanding the potential interactions" they may have with ...

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.