Animal model replicates human immune response against HIV, could revolutionize HIV vaccine research

July 18, 2012

One of the challenges to HIV vaccine development has been the lack of an animal model that accurately reflects the human immune response to the virus and how the virus evolves to evade that response. In the July 18 issue of Science Translational Medicine, researchers from the Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard report that a model created by transplanting elements of the human immune system into an immunodeficient mouse addresses these key issues and has the potential to reduce significantly the time and costs required to test candidate vaccines.

"Our study showed not only that these humanized mice mount human immune responses against HIV but also that the ability of HIV to evade these responses by mutating targeted by CD8 'killer' is accurately reflected in these mice," says Todd Allen, PhD, senior author of the report. "For the first time we have an that accurately reproduces critical host-pathogen interactions, a model that will help facilitate the development an effective vaccine for HIV." Recent studies by Allen's team and others have revealed that of HIV is significantly limited by the ability of the virus to evade immune responses by rapidly mutating.

The traditional animal model for is the , which can be infected with the related simian immunodeficiency virus (SIV). But differences in viral sequences between SIV and HIV, along with differences between the human and monkey immune systems, limit the ability of the model to replicate directly key interactions between HIV and the . Development of an effective HIV vaccine will require a greater understanding of how human immune responses succeed or fail to control HIV.

The current study was designed to test the humanized BLT mouse, a model created by transplanting human bone marrow , along with other , into mice lacking a functioning immune system. Andrew Tager, MD, a co-author of the report and director of the MGH Humanized Mouse Program, explains, "Multiple researchers have contributed to dramatic improvements in the ability of humanized mice to model human diseases. Earlier studies with BLT mice performed at the University of Texas Southwestern Medical Center, the MGH and elsewhere have demonstrated that this particular humanized mouse model reproduces many aspects of the human ."

Timothy Dudek, PhD, of the Ragon Institute, lead author of the current study, adds, "Unlike normal mice, these humanized mice can be infected with HIV. But there has been little evidence regarding whether they reproduce the interaction between HIV and the human immune system, particularly the development of specific immune responses that exert control over HIV by targeting critical regions of the virus."

Tager's team at the MGH Center for Immunology and Inflammatory Diseases created groups of humanized BLT mice using cells and tissues from human donors with different alleles, or versions, of the immune system's HLA molecules, which flag infected cells for destruction by CD8 T cells. Particular HLA alleles, such as HLA-B57, are more common in individuals naturally able to control HIV, and some of the mice generated by Tager's group expressed this important protective allele.

Six weeks after the mice had been infected with HIV, the researchers found that the virus was rapidly evolving in regions known to be targeted by CD8 T cells. Their observation indicated that not only were the humanized mouse immune systems responding to HIV but also that the virus was mutating to avoid those responses in a manner similar to what is seen in humans. In mice expressing the protective HLA-B57 allele, just as in human patients who control viral levels, CD8 responses were directed against an essential region of the virus, preventing viral mutation and allowing the animals to more effectively contain HIV.

"We now know that these appear to replicate the specificity of the human cellular response to HIV and that the virus is attempting to evade these responses just as it does in humans," says Allen, an associate professor of Medicine at Harvard Medical School. "We are currently studying whether we can induce human HIV-specific immune responses in these animals by vaccination, which would provide a rapid, cost-effective model to test the ability of different vaccine approaches to control or even block HIV infection. If we can do this, we'll have a very powerful new tool to accelerate HIV vaccine development, one that also may be useful against other pathogens."

Explore further: Breast milk kills HIV and blocks its oral transmission in humanized mouse

Related Stories

Breast milk kills HIV and blocks its oral transmission in humanized mouse

June 14, 2012
More than 15 percent of new HIV infections occur in children. Without treatment, only 65 percent of HIV-infected children will live until their first birthday, and fewer than half will make it to the age of two. Although ...

Preventing the spread of HIV/AIDS with humanized BLT mice

May 18, 2011
The more than 2.7 million new HIV infections recorded per year leave little doubt that the HIV/AIDS epidemic continues to spread globally. That's why there's the need for safe, inexpensive and effective drugs to successfully ...

Engineered stem cells seek out, kill HIV in living organisms

April 12, 2012
(Medical Xpress) -- Expanding on previous research providing proof-of-principal that human stem cells can be genetically engineered into HIV-fighting cells, a team of UCLA researchers have now demonstrated that these cells ...

Hide-and-seek: Altered HIV can't evade immune system

September 28, 2011
(Medical Xpress) -- Researchers at Johns Hopkins have modified HIV in a way that makes it no longer able to suppress the immune system. Their work, they say in a report published online September 19 in the journal Blood, ...

Recommended for you

Study suggests a way to stop HIV in its tracks

December 1, 2017
When HIV-1 infects an immune cell, the virus travels to the nucleus so quickly there's not enough time to set off the cell's alarm system.

Discovery puts the brakes on HIV's ability to infect

November 30, 2017
Viewed with a microscope, the virus faintly resembles a pineapple—the universal symbol of welcome. But HIV, the virus that causes AIDS, is anything but that. It has claimed the lives of more than 35 million people so far.

Rising levels of HIV drug resistance

November 30, 2017
HIV drug resistance is approaching and exceeding 10% in people living with HIV who are about to initiate or reinitiate first-line antiretroviral therapy, according to the largest meta-analysis to date on HIV drug resistance, ...

Male circumcision and antiviral drugs appear to sharply reduce HIV infection rate

November 29, 2017
A steep drop in the local incidence of new HIV infections accompanied the rollout of a U.S.-funded anti-HIV program in a large East-African population, according to a study led by researchers at Johns Hopkins Bloomberg School ...

Combination HIV prevention reduces new infections by 42 percent in Ugandan district

November 29, 2017
A study published today in the New England Journal of Medicine provides real-world evidence that implementing a combination of proven HIV prevention measures across communities can substantially reduce new HIV infections ...

Research on HIV viral load urges updates to WHO therapy guidelines

November 24, 2017
A large cohort study in South Africa has revealed that that low-level viraemia (LLV) in HIV-positive patients who are receiving antiretroviral treatment (ART) is an important risk factor for treatment failure.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.