Brain center for social choices discovered in a poker study

July 5, 2012
brain

Although many areas of the human brain are devoted to social tasks like detecting another person nearby, a new study has found that one small region carries information only for decisions during social interactions. Specifically, the area is active when we encounter a worthy opponent and decide whether to deceive them.

A brain imaging study conducted by researchers at the Duke Center for Interdisciplinary Decision Science (D-CIDES) put human subjects through a functional while playing a simplified game of poker against a computer and human opponents. Using to sort out what amount of each area of the brain was processing, the team found only one brain region -- the temporal-parietal junction, or TPJ --- carried information that was unique to decisions against the human opponent.

Some of the time, the subjects were dealt an obviously weak hand. The researchers wanted to see whether they could watch the player calculate whether to bluff his opponent. The in the TPJ told the researchers whether the subject would soon bluff against a human opponent, especially if that opponent was judged to be skilled. But against a computer, signals in the TPJ did not predict the subject's decisions.

The TPJ is in a boundary area of the brain, and may be an intersection for two streams of information, said lead researcher McKell Carter, a postdoctoral fellow at Duke. It brings together a flow of attentional information and biological information, such as "is that another person?"

Carter observed that in general, participants paid more attention to their opponent than their computer opponent while playing poker, which is consistent with humans' drive to be social.

Throughout the poker game experiment, regions of the brain that are typically thought to be social in nature did not carry information specific to a social context. "The fact that all of these that should be specifically social are used in other circumstances is a testament to the remarkable flexibility and efficiency of our brains," said Carter.

"There are fundamental neural differences between decisions in social and non-social situations," said D-CIDES Director Scott Huettel, the Hubbard professor of psychology & neuroscience at Duke and senior author of the study. "Social information may cause our brain to play by different rules than non-social information, and it will be important for both scientists and policymakers to understand what causes us to approach a decision in a social or a non-social manner.

"Understanding how the identifies important competitors and collaborators -- those people who are most relevant for our future behavior -- will lead to new insights into social phenomena like dehumanization and empathy," Huettel added.

The study, supported by National Institutes of Health, appears in the July 6 Science.

Explore further: How humans predict other's decisions

More information: "A Distinct Role of the Temporal-parietal Junction in Predicting Socially Guided Decisions," R. McKell Carter, Daniel L. Bowling, Crystal Reeck, and Scott A. Huettel, Science, July 6, 2012. DOI 10.1126/science.1219681

Related Stories

How humans predict other's decisions

June 20, 2012
Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the ...

It's not solitaire: Brain activity differs when one plays against others

February 6, 2012
Researchers have found a way to study how our brains assess the behavior – and likely future actions – of others during competitive social interactions. Their study, described in a paper in the Proceedings of the ...

Recommended for you

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.