Brain center for social choices discovered in a poker study

July 5, 2012
brain

Although many areas of the human brain are devoted to social tasks like detecting another person nearby, a new study has found that one small region carries information only for decisions during social interactions. Specifically, the area is active when we encounter a worthy opponent and decide whether to deceive them.

A brain imaging study conducted by researchers at the Duke Center for Interdisciplinary Decision Science (D-CIDES) put human subjects through a functional while playing a simplified game of poker against a computer and human opponents. Using to sort out what amount of each area of the brain was processing, the team found only one brain region -- the temporal-parietal junction, or TPJ --- carried information that was unique to decisions against the human opponent.

Some of the time, the subjects were dealt an obviously weak hand. The researchers wanted to see whether they could watch the player calculate whether to bluff his opponent. The in the TPJ told the researchers whether the subject would soon bluff against a human opponent, especially if that opponent was judged to be skilled. But against a computer, signals in the TPJ did not predict the subject's decisions.

The TPJ is in a boundary area of the brain, and may be an intersection for two streams of information, said lead researcher McKell Carter, a postdoctoral fellow at Duke. It brings together a flow of attentional information and biological information, such as "is that another person?"

Carter observed that in general, participants paid more attention to their opponent than their computer opponent while playing poker, which is consistent with humans' drive to be social.

Throughout the poker game experiment, regions of the brain that are typically thought to be social in nature did not carry information specific to a social context. "The fact that all of these that should be specifically social are used in other circumstances is a testament to the remarkable flexibility and efficiency of our brains," said Carter.

"There are fundamental neural differences between decisions in social and non-social situations," said D-CIDES Director Scott Huettel, the Hubbard professor of psychology & neuroscience at Duke and senior author of the study. "Social information may cause our brain to play by different rules than non-social information, and it will be important for both scientists and policymakers to understand what causes us to approach a decision in a social or a non-social manner.

"Understanding how the identifies important competitors and collaborators -- those people who are most relevant for our future behavior -- will lead to new insights into social phenomena like dehumanization and empathy," Huettel added.

The study, supported by National Institutes of Health, appears in the July 6 Science.

Explore further: How humans predict other's decisions

More information: "A Distinct Role of the Temporal-parietal Junction in Predicting Socially Guided Decisions," R. McKell Carter, Daniel L. Bowling, Crystal Reeck, and Scott A. Huettel, Science, July 6, 2012. DOI 10.1126/science.1219681

Related Stories

How humans predict other's decisions

June 20, 2012

Researchers at the RIKEN Brain Science Institute (BSI) in Japan have uncovered two brain signals in the human prefrontal cortex involved in how humans predict the decisions of other people. Their results suggest that the ...

Recommended for you

Chatter in the deep brain spurs empathy in rats

June 23, 2017

It's a classic conundrum: while rushing to get to an important meeting or appointment on time, you spot a stranger in distress. How do you decide whether to stop and help, or continue on your way?

How brains surrender to sleep

June 23, 2017

Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna study fundamental aspects of sleep in roundworms. Using advanced technologies, they monitor the activity of all nerve cells in the brain while they ...

The neural relationship between light and sleep

June 23, 2017

Humans are diurnal animals, meaning that we usually sleep at night and are awake during the day, due at least in part to light or the lack thereof. Light is known to affect sleep indirectly by entraining—modifying the length ...

How pheromones trigger female sexual behavior

June 22, 2017

A study by a group of Japanese scientists showed how a male pheromone in mice enhances sexual behaviors in females—and how it may enhance a different behavior, aggression, in males—by identifying distinct neural circuits ...

Coupling of movement and vision

June 22, 2017

In a study published in Cell, Georg Keller and his group shed light on neural circuits in the cortex that underlie the integration of movement and visual feedback. They identified a mechanism in the visual cortex responsible ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.