Deleting a single gene results in autism-like behavior; immunosuppressant drug prevents symptoms

July 2, 2012, Harvard Medical School

Deleting a single gene in the cerebellum of mice can cause key autistic-like symptoms, researchers have found. They also discovered that rapamycin, a commonly used immunosuppressant drug, prevented these symptoms.

The deleted gene is associated with Tuberous Sclerosis Complex (TSC), a . Since nearly 50 percent of all people with TSC develop autism, the researchers believe their findings will help us better understand the condition's development.

"We are trying to find out if there are specific circuits in the brain that lead to autism-spectrum disorders in people with TSC," said Mustafa Sahin, Harvard Medical School associate professor of neurology at Boston Children's Hospital and senior author on the paper. "And knowing that deleting the genes associated with TSC in the leads to is a vital step in figuring out that circuitry."

This is the first time researchers have identified a molecular component for the cerebellum's role in autism. "What is so remarkable is that loss of this gene in a particular cell type in the cerebellum was sufficient to cause the autistic-like behaviors," said Peter Tsai, HMS instructor of neurology and the first author of this particular study.

These findings were published online July 1 in Nature.

TSC is a genetic disease caused by mutations in either one of two genes, TSC1 and TSC2. Patients develop in various organs in the body, including the brain, kidneys and heart, and often suffer from , delayed development and behavioral problems.

Researchers have known that there was a link between TSC genes and autism, and have even identified the cerebellum as the key area where autism and related conditions develop.

Previous studies have shown that certain cells essential for cerebellar function called Purkinje cells, which are among the largest in the , are fewer in number in patients with autism. To better understand the relationship between Purkinje cells and autism, Sahin and his team deleted copies of the TSC1 gene in the Purkinje cells of . Some mice had only one copy of the gene deleted, while others had both of their copies deleted.

In both cases, deleting this gene caused the three main signs of autistic-like behaviors:

  • Abnormal social interactions. The mice spent less time with each other and more with inanimate objects, compared to controls.
  • Repetitive behaviors. The mice spent extended amounts of time pursuing one activity or with one particular object far more than normal.
  • Abnormal communication. Ultrasonic vocalizations, the communication method used among rodents, were highly distressed.
The researchers also tested learning. "These mice were able to learn new things normally," said Tsai, "but they had trouble with 'reversal learning,' or re-learning what they had learned when their environment changed."

Tsai and colleagues tested this by training the mice to swim a particular path in which a platform where they could rest was set up on one side of the pool. When the researchers moved the platform to the other side of the pool, the mice had greater difficulty than the control mice re-learning to swim to the other side.

"These changes in behavior indicate that the TSC1 gene in Purkinje cells, and by extension, the cerebellum, are a part of the for autism disorders," emphasized Sahin.

The researchers also found that the drug rapamycin averted the effects of the deleted gene. Administering the drug to the mice during development prevented the formation of autistic-like behaviors.

Currently, Sahin is the sponsor-principal investigator for an ongoing Phase II clinical trial to test the efficacy of everolimus, a compound in the same family as rapamycin, in improving neurocognition in children with TSC. The trial will be open for enrollment until December 2013.

"Our next step will be to see how the abnormalities in affect autism-like development. We don't know how generalizable our current findings are, but understanding mechanisms beyond TSC genes might be useful to autism," said Tsai.

Explore further: Preventing autism after epilepsy

Related Stories

Preventing autism after epilepsy

May 7, 2012
(Medical Xpress) -- Early-life seizures are known to be associated with autism, and studies indicate that about 40 percent of patients with autism also have epilepsy. A study from Boston Children’s Hospital finds a reason ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.