Study: Heart repairs very early in life, but not as adults

July 31, 2012 By Krishna Ramanujan
The picture on the left shows green c-kit+ precursor stem cells within an infarct (lower right) in a three-day old mouse. These cells are becoming new myocytes and also new vessels. On the right is another image of a heart taken after three months showing a small residual scar (on bottom) remaining from what was an infarct, and new myocytes (red areas) throughout the region. Image: Kotlikoff Lab

(Medical Xpress) -- In a two-day-old mouse, a heart attack causes active stem cells to grow new heart cells; a few months later, the heart is mostly repaired. But in an adult mouse, recovery from such an attack leads to classic after-effects: scar tissue, permanent loss of function and life-threatening arrhythmias.

A new study by Cornell and University of Bonn researchers found that stem cells did not create new in after a heart attack, settling a decades-old controversy about whether stem cells play a role in the recovery of the adult mammalian heart following infarction -- the leading cause of sudden death in the developed world -- where dies due to .

"If you did have fully capable stem cells in adults, why are there no new heart cells after an ? And is this due to the lack of stem cells or due to something special about the infarct that inhibits stem cells from forming new heart cells?" asked Michael Kotlikoff, the Austin O. Hooey Dean of Cornell's College of Veterinary Medicine, and senior author of the paper appearing Aug. 29 in the .

Beating heart cells

This movie shows cells in culture that originated as stem cells (look closely around the center of the frame). The researchers used a mouse model where heart cells fluoresced red and undifferentiated stem cells fluoresced green. All of the cells shown in the movie were green at the time of culture and they turn red after they become heart cells. There were no red cells to start, indicating that the origin of the beating red cells was green stem cells. Watch video

This movie shows beating heart cells in culture that originated as stem cells (look closely around the center of the frame). The researchers used a mouse model where heart cells fluoresced red and undifferentiated stem cells fluoresced green. All of the cells shown in the movie were green at the time of culture and they turn red after they become heart cells. There were no red cells to start, indicating that the origin of the beating red cells was green stem cells.

Co-author Michelle Steffey, a small-animal surgeon in Cornell's veterinary college, developed a procedure to infarct a neonatal mouse heart that is only one-tenth-of-an-inch wide. "It was a tour-de-force technically to infarct and recover those baby mice," said Kotlikoff.

The baby mice grew new heart cells and almost completely recovered from infarction, proving that the infarction did not inhibit stem cells from growing new heart cells. The same procedure was carried out on adult mice and no new heart cells formed, confirming that adults do not have the requisite stem cells to create new heart cells, called myocytes, though new blood vessel cells were created.

To track the stem cells, Kotlikoff and colleagues used a mouse model they developed in which cells fluoresce green when the stem cell marker c-kit is present. In the experiment, after infarction, cells with the c-kit marker fluoresced green in neonatal and adult mice.

"In looking at the adult responses, we were able to prove that the c-kit-marked cells do not form heart cells, but form all of the new blood vessels within the infarct," said Kotlikoff. The stem cells found in the adult heart "have lost the ability to become heart cells," he said. It is known that developmentally single stem cells differentiate into all tissues at the start of life, but over time these cells become "developmentally restricted" or specialized to form only certain tissues, he added.

The study also showed for the first time that vessel stem cells in the adult heart originate there and are not recruited from bone marrow, as has been reported. Those reports have justified a controversial procedure in which bone marrow cells are injected into patients with infarctions.

Finally, the study settles the question of whether cells in a neonatal mouse come from undifferentiated stem cells or from pre-existing heart cells that divide. To answer the question, the researchers used another mouse model where heart cells fluoresced red and undifferentiated stem cells fluoresced green. These two cell types were separated. The researchers found that the green stem cells that had moved into the infarct formed beating red heart cells in culture, proving that the had become heart .

Sophie Jesty, an associate professor and resident in cardiology at Cornell's College of Veterinary Medicine, is the paper's lead author. Researchers at the University of Bonn analyzed the mice to understand and quantify new myocyte formation.

The study was funded by the National Institutes of Health, New York State Stem Cell Science and the European Union Seventh Framework Programme.

Explore further: Helping the heart help itself: Research points to new use for stem cells

Related Stories

Helping the heart help itself: Research points to new use for stem cells

April 8, 2011
(PhysOrg.com) -- Human trials of stem cell therapy for post-heart attack patients have raised as many questions as they have answered -- because while the patients have tended to show some improvement in heart function, the ...

Recommended for you

Young diabetics could have seven times higher risk for sudden cardiac death

December 12, 2017
Young diabetics could have seven times more risk of dying from sudden cardiac arrest than their peers who don't have diabetes, according to new research.

Ultra-thin tissue samples could help to understand and treat heart disease

December 12, 2017
A new method for preparing ultra-thin slices of heart tissue in the lab could help scientists to study how cells behave inside a beating heart.

Blood flow–sensing protein protects against atherosclerosis in mice

December 12, 2017
UCLA scientists have found that a protein known as NOTCH1 helps ward off inflammation in the walls of blood vessels, preventing atherosclerosis—the narrowing and hardening of arteries that can cause heart attacks and strokes. ...

Half of people aged 40-54 have hardened arteries: study

December 11, 2017
Half of middle-aged people who are normal weight and don't smoke or have diabetes may have clogged arteries, researchers said Thursday, urging stronger measures to lower cholesterol.

Research suggests new pathways for hyperaldosteronism

December 7, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with researchers at Eunice Kennedy Shriver National Institute of Child Health and Human Development, part of the ...

One-dose gene therapy produces clotting factor, safely stops bleeding in hemophilia B patients

December 6, 2017
A team of gene therapy researchers has reported positive results in a phase 1/2 clinical trial for the inherited bleeding disorder hemophilia B. A single intravenous infusion of a novel bioengineered gene therapy treatment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.