Infection warning system in cells contains targets for antiviral and vaccine strategies

July 30, 2012

Two new targets have been discovered for antiviral therapies and vaccines strategies that could enhance the body's defenses against such infectious diseases as West Nile and hepatitis C. The targets are within the infection warning system inside living cells.

No vaccines exist for the viruses that cause West Nile or . New therapies are urgently needed to prevent and treat serious infections by these and related viruses.

The University of Washington is engaged in a major, multipronged effort to design therapeutics that harness the warning signals the body produces when viruses attack. Such therapies would prod people's cells into launching a stronger counterattack to control infections by elusive viruses.

UW specialists in how the body fends off are studying molecules, called RIG-I-like receptors, found inside living cells. When these receptors detect virus , they call in the immune system to fight infection.

Scientists in the laboratory of Dr. Michael Gale, Jr., UW professor of immunology, observed an interaction between these molecular dispatchers and a protein called 14-3-3 This protein acts a docking station where other proteins can gather. There they can more efficiently send out signals in response to threats.

The researchers noticed that the interaction between the alert trigger (RIG-I) and the (14-3-3 epsilon) steps up when cells were infected with virus. The agitation prompts RIG-I to work with other proteins, such as TRIM25. Those proteins are essential for RIG-I to warn the immune system to respond to a virus intruder.

"Our work also demonstrated that RIG-I binding to 14-3-3 epsilon is important for RIG-I to move from within the cell where it detects to a location on the cell's membrane where the cell's antiviral defenses can be activated," said Dr. Helene Liu, a postdoctoral fellow who led the study. The move is somewhat like running from the inner corridors of a building to a window to call for help.

"By understanding the molecular partners and location changes that RIG-I requires to convey its signal that virus is present in a cell, we can start to design therapeutics that can trigger this process to kick-off an antiviral immune response and fight virus infection," Liu said.

The scientists reported these initial findings in the May 17 issue of Cell Host & Microbe. The Gale laboratory reports additional observations on the RIG-I-like in the August issue of Immunity, published online July 26.

Postdoctoral fellows Dr. Mehul Suthar and Dr. Hilario Ramos found that, during West Nile virus infection, an RIG-I like receptor called LGP2 promotes the survival and activity of CD8+ T white blood cells, commonly called killer T cells. These disease-fighters eliminate virus-infected cells from the body.

"By increasing the ability and length of time CD8+T cells can work within the body when West Nile virus is present, the immune system is strengthened and has a better chance of eliminating the virus," Suthar commented. Ramos added, "Based on this work, we can consider new ways to boost effectiveness through design of adjuvants or immune-stimulants. These might be applied within a vaccine approach to regulate LGP2 to enhance immunity to infection."

Gale directed the research effort for both projects. He heads the Center for Study of Innate Immunity to Hepatitis C Virus and the Center for Immune Mechanisms of Flavivirus Control, as well as two National Institutes of Health-funded multi-million dollar programs to develop new antiviral therapies and vaccine adjuvants.

"These two new discoveries," Gale said, "greatly advance our knowledge of how the body senses and responds to virus infection and provide us with new avenues to explore when designing antiviral therapies and new vaccines.

"West Nile virus is an emerging virus that has spread across the United States, and hepatitis C virus infects over 170 million people globally. Both viruses are devastating to the health of the individuals they infect. That is why the development of new clinical resources such as vaccines and antivirals for each is so critical."

West Nile virus is spreading throughout North America through infected mosquitoes. It can cause paralysis and death in people. Hepatitis C virus is transmitted through contact with blood or blood products containing the virus. It causes swelling and inflammation of the liver.

Most hepatitis C infections are persistent because the virus evades the immune defenses that normally limit the course of disease. The virus generates a chronic liver inflammation which scars the organ's tissues. The scarring can lead to liver failure and increases the risk of liver cancer. While therapies are available to treat hepatitis C infections, these treatments have harsh side-effects and are not effective in all people. No are available to treat people infected with .

Explore further: Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection

Related Stories

Helper T cells, not killer T cells, might be responsible for clearing hepatitis A infection

July 16, 2012
Helper cells traditionally thought to only assist killer white blood cells may be the frontline warriors when battling hepatitis A infection. These are the findings from a Nationwide Children's Hospital study appearing in ...

Why human body cannot fight HIV infection? Study results could lead to new drug therapies

July 12, 2012
University of Washington researchers have made a discovery that sheds light on why the human body is unable to adequately fight off HIV infection.

Recommended for you

Activation of immune T cells leads to behavioral changes

October 23, 2017
Scientists from the RIKEN Center for Integrative Medical Sciences in Japan and collaborators have found that T cells—immune cells that help to protect the body from infections and cancer—change the body's metabolism when ...

Researchers discover pathway by which blood cells release a potent signalling factor

October 23, 2017
The bloodborne chemical signal sphingosine-1-phosphate (S1P) is released by blood cells to regulate immune and vascular functions. How S1P is released to the circulation was unknown for a long time, until now. On October ...

The skinny on lipid immunology

October 20, 2017
Phospholipids - fat molecules that form the membranes found around cells - make up almost half of the dry weight of cells, but when it comes to autoimmune diseases, their role has largely been overlooked. Recent research ...

Bacterial pathogens outwit host immune defences via stealth mechanisms

October 20, 2017
Despite their relatively small genome in comparison to other bacteria, mycoplasmas can cause persistent and often difficult-to-treat infections in humans and animals. An extensive study by researchers from Vetmeduni Vienna ...

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.