Liver cancer cells stop making glucose as they become cancerous

July 30, 2012, Ohio State University Medical Center

As liver cancer develops, tumor cells lose the ability to produce and release glucose into the bloodstream, a key function of healthy liver cells for maintaining needed blood-sugar levels.

The findings come from a study by at The Ohio State Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The loss of this type of production, a process called gluconeogenesis, is caused by the over-expression of a molecule called microRNA-23a. The change might aid cancer-cell growth and proliferation by helping to maintain high levels of glycolysis under conditions of drastically reduced mitochondrial respiration, also known as the Warburg effect.

The findings suggest that suppressing miR-23a might reverse this process and offer a new treatment for hepatocellular carcinoma (HCC), the most common form of .

The research is published in the journal Hepatology.

"This study identifies an important mechanism that severely blocks and its release from the liver as transform into cancer cells," says principal investigator Dr. Samson Jacob, professor of molecular and cellular biochemistry and William and Joan Davis Professor in Cancer Research, Division of Hematology and Oncology at Ohio State and co-leader of the OSUCCC – James Experimental Therapeutics Program. "It is conceivable that delivery of an anti-miR23a to the tumor site could reverse this."

For this study, Jacob and his colleagues used an animal model that develops diet-induced HCC, along with primary-tumor samples from patients and HCC cell lines. The mouse model mimics different stages of human hepatocarcinogenesis. Key findings include:

  • Levels of enzymes in the gluconeogenesis pathway were drastically reduced, along with transcription factors involved in the expression of the genes encoding those enzymes.
  • miR-23a expression was significantly up-regulated in the animal model and in primary human HCC.
  • miR-23a suppresses the enzyme glucose-6-phosphatase and the transcription factor PGC-1a, two important components of the gluconeogenesis pathway.
  • Interleukin-6 and Stat-3 signaling cause the upregulation of miR-23a.
"Based on our data," Jacob says, "we conclude that gluconeogenesis is severely compromised in HCC by IL6-Stat3-mediated activation of miR-23a, which directly targets and suppresses glucose-6-phosphatase and PGC-1a, leading to decreased glucose production in HCC."

Jacob notes that since glucose-6-phosphatase is also essential for liver cells to convert glycogen (the storage form of glucose) to glucose, suppression of this enzyme can block all pathways leading to glucose production by the liver.

Explore further: miR-122: Loss of tiny liver molecule might lead to liver cancer

Related Stories

miR-122: Loss of tiny liver molecule might lead to liver cancer

July 23, 2012
A new study shows that loss of a small RNA molecule in liver cells might cause liver cancer and that restoring the molecule might slow tumor growth and offer a new way to treat the disease.

Anti-sense might make sense for treating liver cancer

January 3, 2012
A new study shows that it is possible to selectively target and block a particular microRNA that is important in liver cancer. The findings might offer a new therapy for this malignancy, which kills an estimated 549,000 people ...

miR loss may power maligant transformation in chronic leukemia

July 5, 2012
Loss of a particular microRNA in chronic lymphocytic leukemia shuts down normal cell metabolism and turns up alternative mechanisms that enable cancer cells to produce the energy and build the molecules they need to proliferate ...

Research in fish provides new clues about deadly form of liver cancer

July 5, 2011
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths worldwide. Although there are several treatment options available, they are largely unsuccessful because the ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.