Aging kidneys may hold key to new high blood pressure therapies

August 29, 2012
Mohammad Asghar, assistant professor of pharmacology at the University of Houston, is investigating the mechanisms of age-related oxidative and inflammatory stress in hypertension, as well as how exercise and antioxidant/anti-inflammatory therapeutic agents may restore the function of two key receptors and reduce hypertension. Credit: Jerry Powers

Gaining new insight to managing sodium balance and blood pressure, investigators at the University of Houston (UH) College of Pharmacy believe their work may identify future therapeutic targets to control hypertension.

Mohammad Asghar, assistant professor of pharmacology, is exploring the mechanisms by which oxidative and inflammatory – considered hallmarks of the aging process – alter the function of two critical receptor systems in the kidneys that are involved in sodium metabolism and blood pressure. While there are different hormonal systems in the body that aid in sodium balance, at the center of Asghar's research are the dopamine and angiotensin II receptor systems that play pivotal roles in fine-tuning sodium stability and maintaining .

"When the function of these two receptor systems is defective, the equilibrium of sodium is disturbed, causing an increase in blood pressure," Asghar said. "Yet, it remains unclear as to what triggers the dysfunction of the receptors and their delicate ."

In research conducted up to this point, supported by funding from the National Institutes of Health (NIH), Asghar and his collaborators have identified two likely factors – inflammation and oxidative stress – that have adverse effects on kidney functions. His results showed that builds up strong anti-inflammatory and antioxidant environments, thereby improving kidney functions during aging.

"We now are attempting to determine the mechanisms by which and inflammatory stress exert their actions upon these receptors and contribute to increased blood pressure," Asghar said. "We are currently investigating if exercise training has in improving and angiotensin II receptor functions, sodium balance and control of blood pressure during aging."

With this next phase of research funded by a five-year, $1.5 million grant from the NIH's National Institute on Aging, Asghar has set out to specifically examine resistant hypertension, which is a particular type of high blood pressure that does not respond to treatment.

"Resistant hypertension, which is typical of the aging phenomenon, requires a combination of drugs for blood pressure control," he said. "Currently available medications are not effective to treat resistant hypertensive patients. While my research is focused on aging, the outcomes may very well benefit both adult and older populations who suffer from hypertension."

Citing studies that have linked both a low-sodium diet and exercise to reducing oxidative and inflammatory stress, Asghar is a proponent of moderate, regular exercise and better dietary habits. In addition to further investigating the relationship between high salt and hypertension through his analyses of receptor systems in the kidneys, he also is looking at how exercise and antioxidant or anti-inflammatory therapeutic agents may restore the function of those two key receptors to reduce hypertension. He believes this exercise research could yield potential therapeutic targets that mimic exercise, which may prove beneficial for those individuals who are unable to exercise due to physical or other disabilities.

Asghar and his team's ongoing work could lead to new treatments for millions of hypertensive individuals at risk for stroke, heart failure and a range of other cardiovascular diseases due to high , which is a major risk factor for these ailments.

Explore further: Kidney dopamine regulates blood pressure, life span

Related Stories

Kidney dopamine regulates blood pressure, life span

July 19, 2011
The neurotransmitter dopamine is best known for its roles in the brain – in signaling pathways that control movement, motivation, reward, learning and memory.

Abnormal activation of a protein may explain deadly link between high salt intake and obesity

September 19, 2011
Dietary salt intake and obesity are two important risk factors in the development of high blood pressure. Each packs its own punch, but when combined, they deliver more damage to the heart and kidneys than the sum of their ...

Recommended for you

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.