Aging kidneys may hold key to new high blood pressure therapies

August 29, 2012, University of Houston
Mohammad Asghar, assistant professor of pharmacology at the University of Houston, is investigating the mechanisms of age-related oxidative and inflammatory stress in hypertension, as well as how exercise and antioxidant/anti-inflammatory therapeutic agents may restore the function of two key receptors and reduce hypertension. Credit: Jerry Powers

Gaining new insight to managing sodium balance and blood pressure, investigators at the University of Houston (UH) College of Pharmacy believe their work may identify future therapeutic targets to control hypertension.

Mohammad Asghar, assistant professor of pharmacology, is exploring the mechanisms by which oxidative and inflammatory – considered hallmarks of the aging process – alter the function of two critical receptor systems in the kidneys that are involved in sodium metabolism and blood pressure. While there are different hormonal systems in the body that aid in sodium balance, at the center of Asghar's research are the dopamine and angiotensin II receptor systems that play pivotal roles in fine-tuning sodium stability and maintaining .

"When the function of these two receptor systems is defective, the equilibrium of sodium is disturbed, causing an increase in blood pressure," Asghar said. "Yet, it remains unclear as to what triggers the dysfunction of the receptors and their delicate ."

In research conducted up to this point, supported by funding from the National Institutes of Health (NIH), Asghar and his collaborators have identified two likely factors – inflammation and oxidative stress – that have adverse effects on kidney functions. His results showed that builds up strong anti-inflammatory and antioxidant environments, thereby improving kidney functions during aging.

"We now are attempting to determine the mechanisms by which and inflammatory stress exert their actions upon these receptors and contribute to increased blood pressure," Asghar said. "We are currently investigating if exercise training has in improving and angiotensin II receptor functions, sodium balance and control of blood pressure during aging."

With this next phase of research funded by a five-year, $1.5 million grant from the NIH's National Institute on Aging, Asghar has set out to specifically examine resistant hypertension, which is a particular type of high blood pressure that does not respond to treatment.

"Resistant hypertension, which is typical of the aging phenomenon, requires a combination of drugs for blood pressure control," he said. "Currently available medications are not effective to treat resistant hypertensive patients. While my research is focused on aging, the outcomes may very well benefit both adult and older populations who suffer from hypertension."

Citing studies that have linked both a low-sodium diet and exercise to reducing oxidative and inflammatory stress, Asghar is a proponent of moderate, regular exercise and better dietary habits. In addition to further investigating the relationship between high salt and hypertension through his analyses of receptor systems in the kidneys, he also is looking at how exercise and antioxidant or anti-inflammatory therapeutic agents may restore the function of those two key receptors to reduce hypertension. He believes this exercise research could yield potential therapeutic targets that mimic exercise, which may prove beneficial for those individuals who are unable to exercise due to physical or other disabilities.

Asghar and his team's ongoing work could lead to new treatments for millions of hypertensive individuals at risk for stroke, heart failure and a range of other cardiovascular diseases due to high , which is a major risk factor for these ailments.

Explore further: Kidney dopamine regulates blood pressure, life span

Related Stories

Kidney dopamine regulates blood pressure, life span

July 19, 2011
The neurotransmitter dopamine is best known for its roles in the brain – in signaling pathways that control movement, motivation, reward, learning and memory.

Abnormal activation of a protein may explain deadly link between high salt intake and obesity

September 19, 2011
Dietary salt intake and obesity are two important risk factors in the development of high blood pressure. Each packs its own punch, but when combined, they deliver more damage to the heart and kidneys than the sum of their ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.